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INTRODUCTION

The present work comprises basically three essays, one for each
observational mode of Geometric Satellite Geodesy.

The first one, published separately as No. 185 in this Report series,
"On the Geometric Aﬁalysis and Adjustment for Optical Satellite Observa-
tions,™ is about the optical observations mode. In that, the geometrical
analysis of the problem yielded a well-known repgression model for the
adjustment of the observations along with a suitable and convenlent
metric for the least-squares optimum criterion. In the present treatment
of the problem, considerable emphasis has been placed on the geometry,
and no additional element has been introduced for the adjustment.

The second essay, which is in this Report (Section 1), is about the
determinantalvloci {critical configurations) for range networks. This
problem has been treated before in (Rinner [1966]) and (Blaha [1951]),
the latter being an extension of the former along similar guidelines.

The present treatment approaches the topic from the viewpoint of
analysis. An attempt is made to found the fesults theoretically by using
elements of the theory of invariants. To the writer's opinion the present
treatment is noﬁ the most elegant one. Some partial results frém an attempt
for a pure geometriéal approach, which remained unfinished, hint that a
geometrical approach would be more elegant.

The third essay, also in this Report (Section 2}, is about the deter-
minantal loci fotr networks of stations observing range differences (e.g.,

by means of geoceivers). In order to find out these determinantal loci,



an analytical way is followed, similar to that used for the case of range
networks. Although the problem for 'continuously" measured range differences
presents some similarities in treatment with that of ranges, it is different
from that in many aspects.

A number of appendices is included which constitute a substantial
part of the whole work.

As for the mathematical language used, it can be said that formal

‘mathematical language has been avoided.



1. DETERMINANTAL LOCI FOR RANGE NETWORKS

1.1 Introductory Remarks

1.1.1 Recovery of the Satellite-Position Points

In the range observations mode each participating station Pj at an

event [Ej, letj] observes the length of the distance (PjQ;), i.e.
ri; = (P3Q3)-

This distance determines a spherical surface with center at P; and radi-
us rij,'which may be considered as a locus of the satellite;position
point Qj. Thus‘Qj is determined as the intersection of spherical sur-
faces with centers at the station-position points Pj and radii

the lengths of the distances of Q3 from P;. In order to formulate it
analytically, let [xj, ¥i, zi] be the Cartesian coordinates of Pj and
[Xj, Yj, Zj] of Qj, with respect to a coordinate system tied to the
solid earth. Then for the determination of Qj, one has the system of

equations of the form:
: L _
(Xj—xi)2+(Yj-yi]2+(Zj——Zi)z-rij =0, (i=.1?2,...) (1)

where [xj, vi, 2i] are considered to be known here, and the range of the
jindex 1 remains to be determined for the unique determinationlof
Qj(Xj, Yi, Zj). From the implicit function theorem [see Appendix A] it
is inferred that a éystem of three equations of the form (1) may be
solved for Xi, Yj, Zj in terms of xj, yi, zj, (i=l, 2, 3) provided cer-

tain conditions are satisfied. Thus if the system,



2
(Xj-x1) 2+ (¥j-y1) 2+ (Zj-21) 2-11;

=0
2
(Xj-x2) 2+ (Y5-y2) 2+ (25-23)%-135 = O (2)
(Xi-x3) 26 (V4-y5) 2+ (25 -235) -ro; = O
=3 j"73 37530 7035
does have at least one solution-point* and
Xj-xl Yj-yl Zj-zl
Xj—XZ Yj-yz Zj-Zz ;!0, (3)

Xj—xs Yj-y3 Zj-33
then it can be solved for Xj, Y. 23 in terms of Xj, yi, 2%j, Tij,
(i=1, 2, 3), in the neighborhood of a solution-point, (a point which
annuls {2).

Although the implicit function theorem assures the feasi-
bility of the solution of the system (2) with respect to Xj, Yj, Zj, it
does not explain the set of the solution-points. This is in fact
an algebraic geometry problem, and one may take the occasion to say that
the whole deal about range and range-difference networks in the present

work belongs to the jurisdiction of algebraic geometry.

The set of solution-points of (2) is treated in Appendix B, where
it is demonstrated that under condition (B15) a set of points which
annul (2) exists, and under (3), that set contains two points symmetric
with respect to the plane of the centers. Thus in order to tie the satellite-
position points to the solid earth, three known stations observing simul-

taneously are necessary and sufficient to do that. Therefore, in a series

* It is noted that here and throughout this work the field of concern

1s that of real numbers.



of range observationg events wﬁere three stations observe simul-
taneously, one has no.redundant* information at ali. For redun-
dant information at least four stations observing simultaneoﬁsly
are necessary, provided their configuracion‘is not a degenerate
one. When more than four stations observe simultaneously,

they are sufficient but not necessary for reddndént infor-

mation from the observations,

1.1.2 - Introduction of the Coordinate System

Suppose that there are m stations, P, (i=1,2, ..., )
observing simultaneously a series of range observations events
[Ej,\le tj], (1 =1,2,.., m ). The configuration of the points
Pji, Qj is a polyhedron, not necessarily convex, in the extended
field of geometric geodesy. The polyhedron must be "built'" through
the observations. One may consider that polyhedron being con-
structed by piecing together tetrahedra, as building blocks.

To start conétructing the poiyhedron, a basis must be taken upon which
which the rest is founded. It is desirable for the basis to be

characterized as necessary and sufficient for this purpose. Such

a basis is the 3-dimensional simplex , that is, the tetrahedron.

T To put it formally, redundant information from a set of satellite

the

observations for geometric satellite geodesy , is that which is beyond the

necessary and suffiecient for the unique determination of the satellite
position points , (extension points of the field of geometric geodesy).



The coordinate system to be introduced, is attached to the tetrahedron
that serves as basis. This is usually done by considering a coordinate
system and fixing certain coordinates in such a way that a non-degener-
ate tetrahedron is determined. If for an example, one constrains the
three coordinates of Py, two of the coordinates of P, and one of the

coordinates of P3, i.e.,

Xy, ¥1» Z; = constant Z+
Y2, z2 = constant (PS)- \23
zz = constant : o
>
] A #yz
Z2
o) Zi y

% A
Figure 1 .// N

X Y

the fixed tetrahedron is formed from the points (see Figure 1):

0 {¢0,0,0)

origin of the coordinate system,

P1 (x1, Y1, Z1) - the point, the coordinates of which are all fixed,

(Pz)yz (0, y2, z2) - the projection on the yz-coordinate plane of
the point P; whose coordinates y and z are

fixed,
(P3); (0, 0, zz) -~ the projection on the z-axis of the point P3

whose coordinate 2z is fixed.

Some people choose X1 = y3 = 21 = y2 = 22 = z3 = 0. For numerical cal-

culations this choice is preferable; however, in a theoretical treatment



it is not advisable, for it destroys the symmetry of the expressions,
and consequently deprives one from a great advantage for elegant mani-
pulations. Therefore in the following treatment, the constrained coor-
dinates will be left unspecified as long as there is no need to do so.

1.1.3 Minimum Number of Events for a Unique Solution.

Consider now the configuration of the points

Py, =1, 2, ..., nJ, Qs (=1, 2, ..., m), and let
Pi = (xi vyi, zi), i=1,2, ..., n
QJ z (XJJ YJ) ZJ)’ j = 11 2: eney My

be the analytic representations of the points Pj, @ with respect to a
cartesian coordinate system, which has been introduced tﬁrough an admis-
sible set of constraints, say those quoted above, i.e.,

X1, ¥1s Z1, ¥2, 22, 23 = constants.

- Suppose that except the constrained coordinates, all the others are
unknown.‘ Thus there are (3n-6) unknown station—coordinates. One re-
calls that n»4 and then (3n-6)26. A question of interest in the follow-
ing discussion is the minimum number of events for a unique determina-

" tion of the unknown station:coordinates. At each event three unknown
quantities are introduced, namely the coordinates of the satellite-
position point, while n equations result from the simultaneous observa-
tions of the n stations, which are of the form (1). It was proved above
that three equations are, (under certain conditions), necessary and suf-
ficient for the determination of the satellite-position point. There-
fore at each event (n-3) equations are redundant. For a unique deter-
mination of the 3n-6 unknown station-coordinates, one has to find out

min m under the condition’



m(n-3)23n-6, nz4. (4)

That is (n-2)
n-2 . n-2} . -
&%;:3%3 if 3(n-3) is an integer
min m = { (5)
[3£ELE%J+1; if 3%2:%%.15 not an integer,
(n-3° n-

where [é%ﬂ:E%Jstands for the integral part of 3(n-2)/(n-3).
n-3

Although n may be at least theoretically, any positive integer 24,
this is not the case for m, for the sequence Q = 3{n-2)/(n-3) decreases
monotonicly, converging to 3 as n»oo0, i.e.,

1im 3(n-2) _ 3

n+po (n - 3)

Thus one has

minm=6 for n=4 )
= 5 " n = 5 (6)
= 4 il n> 5,(i.e- n-= 6) 7: 8! ')

1.1.4 Patterns of Observations

By pattern of observation, it is meant the way a set of stations
observes a set of satellite-position points. For a given number of sta-
tions, each observational pattern is a combination of some basic observa-
tional patterns. In the following, a formula will be set up, giving the
number of the basic observational patterns of any number of stations.
Although such a formula does not seem to possess any practical interest,
trying to obtain it one gains an insight to the situation.

Let there exist n stations. It was shown above that the minimum
number of stations participating in an event must be four. Therefore the
n stations may observe either in groups of 4, or 5, ...., or (n-1) or all

together. The total number of basic observational patterns then is



n n n n
N=0Cg+Co+ e +Chy Gy

2“-(c8 + c? + cg + C

7)

M_(1 + s 20-1) 4 n(n-1)(n-2)y
2 6
ar

N = 2“-(n+1)-(1+2£%:lla (7)

The last formula gives

N =1 for n 4
=6 " n=>5
= 22 " n==a6 (8)
= 64 " n=7
= 163 " n =8
1.2 Definition of Determinantal Loci
Consider a set of n stations Pi(z = 1, 2, ..., n) observing in some
pattern m events, corresponding to the satellite-position points
Qj (j =1, 2, ..., m). Think of the satellite-position boint Q3 being
observed simultaneously by nj stations, where nj2z4. Then for each Q5
there exist nj observation equations of the form (1), i.e.
s v v VY v V2u (7. 32_p2
fji; = ()(:| x11) +(YJ yll) +(ZJ zll) r113 = Q,
S P R S
fji, = (X3~x12) +(Y3~y12) +(ZJ-212) Tiyy = 0, (9
fjip = (Xj‘xin.Jz*(Yi‘Yin.]2+(Zj‘Zin )Z-rfn_. = 0,
j j R j i’
where i1, 13, ..., inj are indices from the set {1, 2, 3, ..., n} which

correspond to the stations observing simultaneously Q;, and

j =1, 2, 3, ..., m. Totally there are



b e——— e - L

v = n1+n2+n3+...+nj+...+nm (10)
observation equations, and |

= (3n+3m)-6 = 3(n+m-2) (11)
unknowns, namely xj, Yj, Zj, (j=1,...,m} and xj, ¥i, 2zj, (i=1l,..,n} with
six of them constrained. It is supposed that vzu; otherwise the system
is under-determined. Consider the system of u equations out of v. From
‘the implicit function theorem one has that if a solution point to this
system exists*, then it can be solved uniquely for the u unknown vari-
ables in a neighborhood of that solution-point, provided the jacobian
of the functions of the left-hand parts of this system does not vanish
in that neighborhood, (see Appendix A, relation A3). Since one may
choose U equations out of v in as many ways as Cﬁ = vl/pl(v-yu)!, in or-
der to include all these cases, the above condition for the jacobian is
stated as follows. The jacgbian matrix of the functions of the left-

hand parts of the system (9) (v equations in u unknowns) is of rank u,

i.e.,
A(fjiy,...fiiny)
rank ( 3 = rank Jy=p=3(n+m-2) (12)
B(Kj ’YJ ’zj’xl’yl’ 21)
i=1,2,...,n
j=1,2,...,m

If the rank of the above jacobian matrix is less than u, one cannot
find p independent functions out of v, that means that additional rela-
tions exist between the variables. Since the rank of the jacobian matrix
is an invariant under linear transformations (see Appendix C), the addi-

tional relations between the variables have to be invariants too, under

*One recalls that in the implicit function theorem (see Appendix A) the
existence of a solution-point is assumed.

~10-



linear transformations, and therefore they represent geometric relations
(see [Tsimis, 1972] section 2.2.2.3). The totality of those additional
relations, (for which the jacobian matrix is of rank less than p) con-

stitute the determinantal loci.* Therefore in order to find out the

determinantal loci, one has to examine when the jacobian matrix is of
rank less than u. Although the jacobian matrix is huge, (vxu), each of
its rows has at most six non-zero elements out of u, and when one takes
the determinants of the submatrices uxu to check for the rank, pivotal
condensation techniques reducc those determinants considerably (see

Appendices D and E).

1.3 Determinantal Loci and Adjustment of the Observations

Consider again the system (9) being represented by one of its equa-
tions, in order to simplify the notation, i.e.,
2 V2, 2 2
f_]i = (ij}(i) +(YJ~y'l) +(Zj—Zi) -I‘ij =0 ] (13)
where

je{l,2,...,m}
(14)

ielif,iz,.--ring) {1,2,3,...,n}.
By considering Tij as unknowns in addition to X5 Yj, Zj, Xiy ¥is Zi»
take the differential form at (13). Then
Z(Xj -x3) (de—dxi)+2(Yj -yi) [de -dyj)+2 (ZJ -2} (de -dzj) = Erij drij (15)

or

i (dXj-dxi) + oF (dYj-dyi) + 5 (dZj-dzj)=drij,

fThe name is justified from the fact that each of these additional rela-
tions annuls the determinants of all pxy submatrices of the jacobian
matrix. :

=11



Refer this differential form to the point (X?,Y?,Z?,xg,yg,zg,rgg) and let
drij = rij-rij = (rij—rij)—(rij-rij) = Vij'lij

- b, is the observed oi - b and
where rjj is the true value, Tj; is the observed oe vij = rjj-rjj an

o b
Iij = Tjj~Tij-

Then (16) yields

oCxdy %9 (22-2%)
-——-JT}—(de -dxk]*-———J—-o—Yl—(dYJ -dyl)'i'——-']——a—l—(dz:i -dZi] = vlj-]'l]’ (17)
1'13 ’.'(‘1‘.j rl]
or in matrix form
L = -AX+V (18)

where
o1 = (1330, W1 = (i3)s (ues)Xa = (dX;,dY;,dZ;,dx;,dy;,d24)"

and yA(,+6) results from the jacobian matrix Jy (see relation [12]}, by
dividing each of its rows by the corresponding rgj. It is noted that
since rij#O the rank of Jy does not change by that operation and Eonse—
quently

rank A = rank Jy. (19}
Under the assumptions E(V) = 0 and Cov(V) = E(Vﬁr) = 021 where (} is
unknown, relation (18) is a linear statistical model. From the theory of
the linear model one has that the best {minimum-variance)} linear (linear
functions of 1ij} unbiased estimate of X is given by least squares and
is unique 1ff rank A= ;. By recalling relations (19) and (12} one con-
cludes that a unique least squares solution exists 1ff

rank A = rank Jy = u,
i.e., if there exist no determinantal loci. That is why the determin-

antal loci are studied in the present work.

-12-



1.4 Determinantal Loci of Specified Observational Patterns

1.4.1 General Remarks

In this scction specificd observational patterns will bc examined
ih‘order to find out their determinantal loci, That is, given the num-
ber of stations and the way they observe (observational pattern), the
corresponding jaéobian matrix will be searched for the cases when its rank
is less than the number of the unknowns. Despite the fact that there .
exist a large number of cases to be examinéd, a systematic procedure may
cover them all, at least by enumeration, for they constitute a denumer-
able set.

Tt is recalled [see section 1.1.1] ‘that in general , four ground
stations are necessary and sufficient for each event. This must especi-
ally be stressed, for it is the core of the whole problem. Thus the
case of four ground stations is treated first. No specification of the
coordinates which are to be constrained is made until a general formula
is reached that is susceptible to all the specificatibns. The theory of
determinants is used extensively; however, explicit expressions
of the determinants are given instead of symbolic, sacrificing compact-

ness for an easier understanding of the manipulations involved.

1.4.2 The Case of Four Ground Stations

Let Py = (x1, ¥y, 21), Py = (X2, ¥2, 23), P3 = (X3, ¥3, 23)>

1il

Py (x4, Y4, X4) be four simultaneously observing ground statioms, and
Qj = (Xj, Yj, Zj), (j =1, 2, ..., m) be a set of satellite-position
points observed by thosc stations. Then the functional relationships

on which the statistical model is based, have the form

-13-



£ 7 Oyox) 2 (Voy) 2 (25-2)7 = =i
ij = WAy-%i jT¥i i ij

i=1,2,3,4 (20)
i=12, ..., m, mz6
[see section 1.2 and 1.3).
This system contains
v = 4mz24 equations (21)
and
Im+3x4 = 3(m+4) unknown variables, six of which are to be con-
strained, so that there actually are
p=3 (m+2) unknown variables. (22)
Nevertheless, while taking the jacobian matrix (Jy)} for the system (20},
no unknown variable is considered constrained. Thus the jacobian matrix
of the system (20) is of dimension -
dmx3(m+4).
According to what was said in section 1.3, the least squares solution is

unique 1ff

rank Jy = p 3{m+2) (23)

while for

Tank Jy < u = 3(m+2) (24)
one has the determinantal loci of the configuration. Therefore in order
to find out the determinantal loci, one has to consider the determinants
of all uxpy submatrices of the jacobian matrix Jy, where the value of
u=3(m+2) is determined from the value of m which is obtained by equating
the number of unknowns to the number of equations, i.e.

dm = 3(m+2) => m=6, (25)

Thus po= 3(m2) = 24 (26)

~14-



It should be remembered that m=6 it the minimum number of events for a

unique solution‘in the case of four ground stations, (see section 1.1.3, rela-
tion [6]). Manipulating with determinants of that order (i.e. 24-th)

scems to be an appalling work; however they may he reduced in order by
pivotal condensation in a systematic way, which leads to a sort of con-

densation at the jacobian matrix, being called here condensed jacobian

matrix. In order to avoid interruption of the main objective by annoy-
ing details, the derivation of the condensed jacobian matrix is given

in Appendix E, from where the final form is recalled in Table 1.

X Y1 2] X2 Y2 22

+ + + - - -

(xj-x1)A{ (Yj-yl)A% (Zj—zl)A{ (xj-xzja% (Yj—yz)ﬂ% (zj-zz)ag

X3 Y3 Z3 | Ya Zy

+ + + - - -

(xj-x3)A§ (Yj-y3)a% (Zj—zslag J(Xj-X4JA3 (Yj—Y4)A3 (Zj-z4J&£

Table 1. The Condensed Jacobian Matrix for Four Stations

In Table 1:
XJ Yj ZJ 1
j Xj—XZ Y—}’z Z'—ZZ X2 y2 22 1
M = XJ‘XS Yi-y3 Z3-23| =|x3 ¥z z3 1}
Xj—X4 Yj'Yd Zj-Z4 Xg Ya Z4 1
. X5 0Y; Z; 1
_ ] ] J
Xj-x3 Yy-¥p Z5-z3) (X1 y1 zp 1 _
8y = IXj-x3 Yj-yz Zj-z3) =|x3 ¥z z3 1 G = 1,2,...,m), (27)
Xj—X4 Yj‘Y4 Zj-24 X4 ¥4 24 1

~]15=



Xy Yy Z; 1
. X3-xy Yj-¥1 Zj‘zl =[x 1z !
ad = ij_xz ij-yz gj-ZZ = X2 Y2 22 i
1=Xq Y-Y4q £57247 T (X4 Y4 Z4
} J] (j=1,2,...,m}, (27)
{cont.)
i Xy Y3 23 1
PO b s B B 2 i B L S B
b3 = IXj-xp Y5-yz Zj-2) = iXp vz Z2 1
Xj-xs Yj—)f:; Zj—23 Xz ¥3 I3 1

(compare Appendix E, relations [E14]).
The above expression of the condensed jacobian matrix is a compact symme-

tric form, where the constrained coordinates are not specified. Each time
a set of admissible constraints is selected, one has to delete the corres-
ponding columns from the above expression. Because of the symmetry it is
very flexible to specifications. The determinants of the 24x24 submatri-
ces of the original jacobian matrix, which are taken for the determinantal
loci, are equal to the determinants of the corresponding 6x6.submatrices

of the condensed jacobian matrix. Therefore for the determinantal loci

one has to consider the determinants of all 6x6 submatrices of the con-

densed jacobian matrix. To fix ideas, suppose that the coordinates

X1,Y1,21,Y2,22,23 are constrained. Deleting the corresponding columns

from the condensed jacobian matrix, it becomes an mx6 array, i.e

X2 X3 Y3 X4 Yq Z4

_(XJ—Xz)A% +(XJ-X3)A% +(YJ -YB)A% —(XJ—}({]‘)A% _(Yj_y4)ﬁi -(Zj—z4)Agl

Table 2. The Condensed Jacobian Matrix for Four Stations When the

coordinates Xxj, ¥i, 21, ¥2, 22, 23 are constrained

For thc determinantal loci one must examine the zeroes of the determin-

ants of the 6x6 submatrices. For a representative of these determinants,
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consider that of the first six rows, i.e.,

‘ ! Loy I x Al C(xooy At - (Zy-z,)80

-(Xy=x2)h; (Xp-x3)83 (Y1-y3)dz - (Xy-x4) 8y -(Xy-yq)dy -(£1-24)5
2 2 2 2 2 2

-(X2-x2)83 (X2-x3)8% (Y2-y3)A5 -(X2-x4)5 -(Y2-yq) oy -(Z2-24) 04
3 3 3 3 3 3

- (X3-x2)83 (X3-x3)8%3 (Y3-y3)b3 -(X3-x4)84 -(Y3-y4)dq -(Z3-24)84

1814, .., 6= (28)

EIEE

4 4 4 4 4 4
~(Xq-X2)d3 (Xg-x3)83 (Y4-y3)83 -(Xg-x4)84 - (Y4-y4)hg -(Z4-24)04

5 5 5 5 5 5
-(Xg-x2) 8 {Xg-x3)A% (Y5-y3)A3 -(X5-X4)4g -(Yg-y4) 83 -(Zg5-24)84

6 6 6 6 6 6
-(Xg-x2)87 (Xg-x3)43 (Ye-y3)a3 - (Xe-x4)84 -(Ye-y4) b4 -(Z6-24)04
(Check with the expression [E17] of Appendix E}.

In terms of fundamental invariants (see Appendix F) each of these

determinants may be expressed as follows:

| by Yy % 1
:E : X3 Y3 ! IEx Yy z.,1
cq OZXZ 1 v 1 T34 jb j4 ﬂjﬁﬂjSAj4ﬁj3Aj2.ﬁJl
8133350 -+ 301, 1 D Y2 T2 Ry g a4 e33R
: T
i3 33 | Yy z 1 29
®16 “16 “36 (29)

This expression is cbtained by two imbedded steps of Laplace expansion,
namely:

1st step-expansion according to the last three columns, and

2nd step-expansion of the cofactor of each term in the first step

according to its last two columns,

o; and oy result from the two imbedded Laplace expansions respec-
tively. The summation is a double one. The outer summation being taken
over the Pl selections -of row indices takep three at a time, and the

inner one over the p, selections of the three complementary row indices
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for each of the p; selections taken two at a time. Thus summation (29)
extends over
p1pz = Cg C% = g%%T—E%%T = 60 terms

These determinants are relative invariants (see Appendix C) and
when equated to zero, a hypersurface results which is an absolute in-
variant , for multiplication by a factor would have no significance in
its equation (see Appendix F). One observes that each of these deter-
minants is a functional of twenty-four variables. Since all the vari-
ables are coordinates of points in the geometric space, one may analyze,
so to speak, that hypersurface into 3-dimensional loci. Each of these
loci is a part of the hypersurface and all together constitute the hy-
persurface. To carry out that analysis a systematic procedure which
fits the geometric characteristics of the problem will be beneficial.
Thus consider all the variables involved falling in two groups: (A)
the coordinates of the satellite-position points, and (B) the coordin-
ates of the station-position points. Then two categories of loci will
be considered: (1) the loci for the satellite-position points, and (2)

the loci for the station-position points.

(1} Determinantal Loci for the Satellite-Position Points

Consider the equation

L1 % TR (30)
where 1ij, SPYTRRS is a selection of six indices from {1,2,...,m}.
If (30) is satisfied for any six satellite-position points, then the
rank of the jacobian matrix (table 3) is less than six and consequently

one has a determinantal locus the analytic representation of which is

(30). This is a hypersurface in 24-dimensional space. However, one
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may obtain 3-dimensional loci on this hypersurface by keeping the coor-
dinates of all the points but one constant. One observes from (29)
that the left-hand side of (30) is a functional of
i) second degree with respect to the coordinates Xj, Yj, Zj of
any of the satellite-position points,

ii) sixth degree with respect to the coordinate Xp

iii) fifth degree with respect to the coordinates X3z, ¥3, and

iv) fourth degree with respect to the coordinates Xy, Yz, Z4-
Thus the three dimensional loci on that hypersurface for different
points are generally different. Here the three dimensional loci on the
hypersurface (30), for a satellite-position point will be considered.

Consider, without loss of generality, the hypersurface

laly,...,6 = 0,

with all the coordinates involved being kept constant, except the coor-
dinates of one of the satellite-position points, say Xg, Yg, Zg. Then
Iﬂll,...,6=0 represents a second degree surface as a locus of the point
Qg = (Xg» Yg» Zg). This surface passes through the four station-posi-
tion points and the first five sateliite—position points Q, Qu, Q3. Q>
Qg. As a matter of fact'these nine points lie on that surface, for by
plugging the coordinates of any of them in the place of Xg, Yg, Zg, the
last row of |Aly, ..., vanishes. Thus if for any selection {iys...,ig}
out of {1,2,...,m}! the equation (30) is satisfied, which is equivalent

to saying that all the satellite-position points lie on the second
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degree surface defined by the four station-position points and any five
satellite-position points, then the rank of the jacobian matrix is less
than six. Thus , the four station-position points and any five satel-
lite-position points determine through (30} a determinantal locus in
the three dimensional space (a second degree surface) for the rest
points.

Now one proceeds to find out the linear (first degree) three dimen-

sional determinantal loci.

Consider the expansion (29) of I5|j1,_. The value of this

g
determinant is zero if each of its expansion-terms vanishes. By equat-
ing to zero each factor of the typical expansion-term in (29) one ob-
tains the following determinantal loci.

(i} By putting |§?1 }I = x2-X5 =0, (jl =1,2,...,m), it is con-
cluded that the plane perpendicular to the x-axis, passing through
Py = (X3, ¥p, 2Z3) is a determinantal locus for the satellite-position
points. In other words if all of them lie in that plane, all
|A!j1""’j6 vanish, and then the rank of the jacobian matrix is less

than six.

(ii) By equating the next factor to zero, i.e.,

X3 Y3 1

ij sz 1 =0 (31)
) SR 1 (j,,j, any two indices from {1,2,...,m})

)z 1z 23

one has the collinearity condition of the projections on the (x,y)-

lane of the th ints Pz = in = . Y. .
plane o ree points Pz {x3, ¥z, 23), Q]Z (KJZ, iy 232),
Q: = (Xs Y. . ).

I3 (33’ I37 3
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”””' ”Fiixg,Y3,Z3)

|
l .
A —y

. jsz
P,7(X5,Y5,0)

Figure 2

Thus if all the‘satellite-position points lie in a plane through
?3 = (xz, y3, 23} and perpendicular to the (x,y)-plane, then relation
(31) is satisfied for gny ips33 from (1,2,...,m}, and consequently each
plane of the pencil of planes with axis the projection line of Pj to
the (x,y)-plane, is a determinantal locus for the satellite-position
points, (see Figure 1)1

(iii) Equating the third factor to zero one has
X4 Y4 Z4 1
X5, Y, zj4 ' ) 2
X, Y- Z. 1

. (for any Ga0dg i from {1,2,...,m})

X: Y Z.
Jg - "Jg g
This is a condition for four points in 3-dimensional space to be line-

arly dependent, that is for the points,
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Pg = (X4,¥4,24), Q5, = (de,Yj4,Zj4), st = (ij’Yjs’ZjS)’ Qj6 z (xj6’Yj6’Zj6)
to be coplanar. Therefore if all the satellite-position points lie in
a plane through the point P4 = (x4,¥4,Z4) relation (32) is satisfied

for any triple from 1,2,...,m and consequently each plane of

the sheaf of planes through the point P, is a determinantal locus for
the satellite-position points.

(iv) By equating either of the next three factors to zero, take

)4 i

iy} 0,

one has the coplanarity condition of the points

Py = (x1,¥1,21), P2 = (x2.y2,22), P3 = (x3,¥3,23), Qj, = (Xj,.Yj .25 )
Therefore the plane of the station-position points P;, Py, P3 is a
determinantal locus for the set of the satellite-position points. Sim-
ilarly from

jZ jS

4;7 =0 or Ag" = 0
one concludes that the plane (Pl,Pz,P4) is a determinantal locus for
the set of the satellite-position points and from

B! - o,
that this is the case for the plane (P,Pz,P4}. Notice that the last
two loci (i.e. the planes (P1,P2,P4) and (P1,P3,P4)) fall in the above
considered case (iii). These are the determinantal loci for the satel-
lite-position points independently from the relative position of the
stations.
Remark. 1In addition to the above determinantal loci one could quote

those which are degenerate cases of the above. These determinantal loci

lower further the rank of the jacobian matrix, when it has already been
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1owefed-from six at least to five by onc of the above quoted determin-
antal loci. For example, if all the satellite-position points are on

a straight line, this is obviously a determinantal locus that is inclu-
ded in (32) for then there exists always a plane through P4 and the
straight liné carrier of the satellite-position points. Such a loci
which lower the rank further, once it has already been loweréd from
six, are trivial and result in an obvious way, being of no interest in
this context.

(2) Determinantal Loci for the Station-Position Points

One is inferested here for the determinantal loci for the station-
position points independently from the satellite-position points.
Since there are only four stations the only loci are the straight line
determined by any two Qtation-position points and the plane determined
by any three of them. In the following the plane determined by any
three station-position points is‘considered first. Suppose that the
four station-position points are coplanar. Consider the determinants

j
]

S T S
, 82, 43, 84,

expanded according to the first row, 1.e.

A{ = alxj + Ble * inj + &1 : (33)1
A% = agXj + szvj‘+ Y2Zi + 6, | (33)
li% = 01.3)(j + BSYj + YSZj' + 63 (33)3
A% = a4xj + B4Yj + Y4Zj + 8, | | o (33)y

where aj, 85, vj,» 83, (i=1,2,3,4) arec functions of the station coordin-

ates only, (see relations 27).
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By putting

2 2 2.1/2 . j
py= E(ai + By * Y / , {e = sign of A%] (34)
one has
Aj ﬂ‘] Aj ﬁj
._l_ = -—2- = ——3- = '—4— = d (35)

where d is the distance of Qj z (xj,Yj,Zj) from the plane of the four

station-position points. Indeed

i

Pi

(1 =1,2,3,4)

is the expression of the distance of the point Qy = (Xj,Yj,Zj] from the
plane of three of the four station-position points, and if all four are
coplanar (35) follows.
From (35) and relations (E12) and (E13) of Appendix E one obtains:
0= 8] - ad+ 8- 8] = dloypprogpg) =
Py 3z = Dot0,, (d £ 0). (36)
Now consider the typical row of the jacobian matrix (Table 3} and effect
the following rank-equivalent operations, in the sequence they are given
(i) Divide each row by the corresponding A% (")
(ii}) Subtract from Xx,-column, py/p4 times the x,-column.
{(iii) Add from x3—column, ps/p4 times the x4—column.
(iv) Add from yz-column, p3/p4 times the yg-column.
(v) Change the signs of the columns Xz, Yz Xga Yg» Zy-

Then the rank-equivalent jacobian matrix is:

*One may divide by any of Al (i = 1,2,3,4)

-2 b=



*2 X3 Y3 xy, Y4 z, 7

pz p3 03
(xz_x‘q)-p—.-; (xd_‘x:;)a (}’4')’3}a xj —X4 Yj_y4 Zj"z4

j=1,2,f..,m.
Table 3. Rank-equivalent Condensed Jacobian Matrix for Four
Coplanar Station-points.

One observes fha; each of the first three columns hés the same en-
tries throughout all the rows. Therefore thé determinants of all 6x6
submatrices vanish and consequently the plane determined by any three
of the four station-position points is a &eterminantal locus for the
fourth one.

By considering the determinants Ag,(i=1,2,3,4) oné concludes that
if three station-ﬁosition points are collinear one of them vanishes.
Thus the straight line determined by any two station-position points is
a determinantal locus fﬁr each of the other two separately.

Recapitulating the above results one has

1) Determinantal loci for the satellite-position points

la) The four station-position points and any five satellite-
posifion points determine through relation (30) a determinantal
locus for the rest .of the satellite-position points.‘

1b)} The plane through Py = (X7, yz,.zz) and pérpendicular to
the:x-axis is a determinantal locus for the set of the satellite-
pesition points. |

lc) Each plane of the pencil of planes through Pz = (x3,¥3,23)

and perpendicular to the (x,y)-plane is a determinantal locus for

the set of the satellite-position points.
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1d) Each plane of the sheaf of planes through Py = (x4,¥4,24)
is a determinantal locus for the set of the satellite-position
points.

le) Each of the planes (PyP,Pz}, (P1PpP4), and (P1PzPy) is a
determinantal locus for the set of the satellite-position points.
Although (P{P,P,) and (PyPzP,} are included in (1d) it seems appropriate
to quote them along with (PyP,P;} which is not included in
any of the above loci.

2) Determinantal loci for the station-position points

2a) The plane of any three of the four station-position points
is a determinantal locus for the fourth one.
2b} The straight line through any two station-position points

is a determinantal locus for each of the other two separately,.

Remarks

i) No loci that lower the rank of the jacobian matrix further,

once it has already been lowered from six, is considered above. These

loci are trivial and are easily obtained as further degeneration of

those already given. For example, if the satellite-position points lie

on a straight line, then there is always a plane through that line and

the station-position point Py = (x4,y4,%4), and this is nothing but an

obvious further degeneration of the above quoted case (1d)}.

ii) The above results correspond to the set of constraints

X1,¥1s21,¥2,22,23 = constant. However, for any other set of admissible

constraints only the determinantal loci (1b), (lc), (1d), and (le) will

be changed. Having the symmetric condensed jacobian matrix of Table 1,
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one can carry out the above procedure for any other set of admissible
constraints very easily.

1.4.3 The Case of Five Ground Stations

1l

Let Py (Xlel’zl)’ Py = (x23y2122), Pg = (XS’Y3’23)
Py = (x4,¥4,24)s Pg = (x5,f5,25) be the position points of five observ-
iﬁg ground stations. Since the minimum number of participating stations
at each event is four, there are

N = Ci +'C§ =5+ 1=6
possible basic observational patterns, (see section 1.1.4). As a matter
of fact, they may oBserve either all togethef or in groups of four. Let
Qj z (Xj,Yj,Zj], (j=1,2,...,m) be a set of satellite—position points

observed in some pattern by the above five stations. Then one has a

set of simultaneous functional relationships of the form*
2

£y = (exp)” v gy (25-23)° = 135 | (37)
This system contains 3m+3x5 = 3(m+5} unknown variables, six of which
are to be constrained, so that thére actually are

g = 3(m+3) unknown variables. . (38)
Thus the number of simultaneous equations (37) must be

vz ou o= 3(me3) _ | (39)
and for a unique least squares solution

rank Jy = ﬁ = 3(m+3) ' ' | : (40)
where Jy is the jaéobién matrix of f;; with respect to X5,Y5,25,
Xi,¥;, 23, (3=1,2,...,m, i=1,2,3,4,5). If

rank Jy <u = 3(m+3) ‘ o (41)

*In this case for each j the index i takes on at least four out of the
five values 1,2,3,4,5. '
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one has the determinantal loci of the configuration. In order to find
out the determinantal loci one must search for the zeroes of the deter-
minants of all uxy submatrices of the jacobian matrix Jy.

The expression of the jacobian matrix Jy varies with the observa-
tional pattern; however, it is not difficult to write down a general
expression for the jacobian matrix, in the sense that it comprises the
jacobian matrices of all possible observational patterns. In order to
form that general expression, consider all possible station-quadruples,
i.e.,

0s = (1,2,3,4)

04 = (1,2,3,5)
03 = (1,2,4,5) (42)
02 = (1,3,4,5)
01 = (2,3,4,5).

Each satellite-position point is observed either by all five stations
or by one of the above station-quadruples. It turns out that one can
condense the jacobian matrix as in the case of four stations. The only
new point in the procedure of getting the condensed jacobian matrix in
this case, is that about the satellite-position points observed by all
five stations. One verifies very easily by pivotal condensation that
the condensed jacobian matrix corresponding to the case when all five
stations observe simultaneously a set of satellite-position points, is
formed by the condensed jacobian matrices of any two station-quadruples,
say 05 = (1,2,3,4) and 0, = (1,2,3,5) placed rowwise one after the
other. It is understood, of course, that the condensed jacobian matri-

ces of these two station-quadruples correspond to the very same set of
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satellite=position points. Hence it became obvious the way of forming
the general expression for the jacobian matrix. Let {jS}’ {j4}, {j3},
{jz} {jl} be the index-sets of the satéllite—position points.observed
by the station—quadruples 0g,04,03,07,0q respectively, two and only two
of which (no matter whicﬁ ones) comprise* the satellite-position points
observed by all five stations. By getting the condensed jacobian ma-
trices of all station-quadruples separately, and ﬁiacing them rowwise
one after the other (regardless order) one forms the general expression
for the condensed jacobian matrix for five stations. That is given in
Table 4 where the symbol

A%k; i,k = 1,2,3,4,5,
is similar to Ag‘that was used previously in the case of four stations,
(see relations (27). Namely it stands for the determinant of 4-th
order whose £0p row is occupied by the affine coordinates of the satel-
lite-position peoint Qj (indicated by the upper index) and the rest three
by the affine coordinates of three out of the five station-position
points (in order of increasing index), excluding the stations Pj and Py
(indicated by the lower indices). For example

. - Z.
XJ YJ j 1

XI 5’1 Z] 1
23 = (43)
X4 y'4 Z4 1

1

%5 75 Z5
The order of the rows is conventional, though. Some other order could

be stipulated.

*Each of those two station-quadruples comprises the satellite-position
points observed by all five stations, in addition to those which are
observed by that station-quadruple alone.
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Having formed the general expression for the condensed jacobian
matrix, one proceeds to find out the determinantal loci. At first an
admissihle set of constraints is chosen. As in the case of four sta-
tions, take

'xl,yl,zl,yz,zz,z3 = c¢constant.
Since the columns of the jacobian matrix corresponding to the con-
strained coordinates are zero, the condensed jacobian matrix corres-
ponding to the above chosen set of constraints results from Table 4 by
simply leaving "out" the columns corresponding to those constrained
coordinates. That matrix has 15-6 = 9 columns. Thus in order to find
out the determinantal loci one has to segrch for the zeroes of the de-
terminants of.ali.gxg submatrices. Again, as in the case of four sta-
tions, the determinantal loci are distinguished in two categories:
i) loci for the satellite-position points, and

ii) 1loci for the station-position points.

The determinantal loci of each category are independent from one
another, in the sense that each one may occur independeﬁtly from the
others.

1) Determinantal loci for the satellite-position points

For a systematic exposition the following two groups of patterns,
(compfising all the patterns) will be considered separately.
| (a) qu station—quadruples, say Og =_(1,2,3,4) and O¢ = (1,2,3,5)
carry out all the observations. The theoretical treatment of this pat-
‘tern includes that of the pattern when all five Stations.observe simul -

taneously all the satellite-position points.
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(b) Three, four or all five station-quadruples carry out all the
observations.
Remark. When all fivc stations observe simulténeously a certain set
{Qj} of satcllite—position.points,one has the maximum number of equa-
tions he can have with the same set {Qj] and any possible observational
patterﬁ. The jacobian matrix corresponding to any observational pat-
tern can be obtained from that of the pattern when all stations observe
simultaneously by omitting certain equations. For example, suppose
that the point-set

{Qj}, je{j}=(1,2,3,...,m}

has been observed by the quadruples 0g, 04 and 0z, so that Og has ob-

served the subset

{QJ- :

04 the subset {Qj4}, Jqeligt c 43l

b, eelich € G,

and 03 the subset {QjS}, jgeligt C{jl,

where
Gatuliydulicl=lits Gadndigd=e; {3,300 k=65 G101 51=0.

The jacobian matrix of this pattern, results from the jacobian ma-
trix of the pattern when all five stations observe simultaneously all
the points in {Qj], by omitting the rows corresponding to the observa-
tions of stations Pg, P4 and Py toward the point-sets {st}, {de}, and
{st} respectively. Therefore, by considering the jacohian matrix as
if all stations observe simultaneously, no matter what the actual obser-
vational pattern is, and checking its rank, if it is less than nine then
this is the case for the jacobian matrix of the actual pattern as well;

however if it is equal to nine, the rank of the jacobian matrix of the
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actual pattern may or may not be equal to nine, and one must examine
the rank of the actual jacobian matrix.

From this remark becomes obvious why the pattern of two station-
quadruples carrying out all the observations is sQ important to be
treated separately, iri searching for the determinantal loci in the case
of five stations.

(a) Two station-quadruples carry out all the observations

Let O¢ = (1,2,3,4) and 04 = (1,2,3,5) be the two station-quad-
ruples. The condensed jacobian matrix of this case is given by the
rfirst two row-blocks of Table 4,
. = X. ,Y. ,Z
{QJ; {(35 is
is the set of the satellite-position points observed by Og = (1,2,3,4)

js)}s isﬁ{js}:

and

{Qj4} = {(Xj4’Yj4’zj4]}’ j45{j4},

is the set of the satellite-position points observed by 0, = (1,2,3,5).
Note that for
Q. 1 =1{Q, } =1Q.}, (*) (44)
Je Jg )

onc has the case when all five stations observe simultaneously all the
.satellite-position pointé, while for

{QJ 5}0‘{Qj4] = 4, | . ‘ (45)
the case when there is no event at which stations P, and Pg enter to-
gether. In.the case when some satellite-position points are observed

"by all five stations, while the rest by either of the two station-

*It is assumed that {Qj }LJ{Qj } = {Qj} is the set of all the satellite-
S 5 4
position points available.
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Table 5. The Condensed Jacobian Matrix of the Case When the Station- Quadruples 05 and 0, carry out
all the observations, under the Set of Admissible Constraints X1, Y12 275 Yo» Zp» z3 Constant,




quadruples alone, neither (44) nor (45) is true.

Considering the ébove adopted set of admissible constraints, the
condensed jacobian matrix of the present case is given by Table 5
(on pregeding page), that is nothing else but the first two row blocks
of Table 4 after omitting the columns of the constrained coordinates
x> V1s 21 Ypr 2 2y

For the determinantal loci one has to search for the zeroes of the
determinants of all 9x9 submatrices. In order these determinants not
to be identically equal to zero, each one of them must include at least
three rows from each station-quadruple or that is equivalent at most
six rows from each station-quadruple.-

Since the rank of the jacobian matrix is invariant under affine
trnasformation (see Appendix C) and the same is true for the detérmin—
ants of its submatrices, one can express each of the determinants of
the 9x9 submatrices as polynomials in the fundamental invariants (see
Appendix F). This is done by Laplace expansion in the same way that
was done for the case of four stations, Thus the determinant,

, of the submatrix corresponding to a certain selection

| a(05,04)
kpskyyooo kg of satellite-point-indices (satisfying the following con-
ditions (47) is given by the following messy, but nevertheless useful,

summation formula.
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XS 3'3 1

k4.k5,k6p k.?,ka'kg ky kg kg ky k8 kg

sogbeo UMK Y M Ry Baedyehychead shcs
|8(05,00) | = Z(_Uﬁ*f’z I3 ]:4 kp Vi N P 4584585854854
k1 B X, Y !
01(02(03)J 3 5
v R R s6)
where
ky e (Jg} U {is} ,
kg, k2 £ {35} U{j4} N
' (47)
ka, ks, kg € {35} s
k-?, ks, kg € {jd]’ >
4, if ky, ky, kg e {Jg} , respectively,
TR _ (48)
5, if ky, kp, kg € {J4} , respectively,
X4 Y4 Zz4 1 X5 ¥g zp 1
) CT 4 Z 1 X Y Z 1
k ,k L,k k, "k, “k k7,kg,k k7 *ks “k
X = |4 e e gkmkeke | R7 K7 TRT (49)
XkS Yks st 1 st YkS Zkg 1
xkﬁ Ykﬁ Zk6 1 ng Ykg Zkg 1
By equating the determinant of a 9x9 submatrix to zero, i.e.,
|4(05,04)] = 0 | (50)

one has a hypersurface with at least 24 and at most 36 variables. One may
keep constant the coordinates of all the points involved but one, and consider
(50) as a three dimensional locus of that point. However the form of (50)
varies with the choice of the submatrix in such a way that searching for the
three dimensional second order determinantal loci is not as simple a task as
in the case of four stations. Before proceeding systematically, take for

example the determinant of the following Table 6.
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Table 6. A 9x9 Submﬁtrix of the Table 5.




The abofe table is a 9x9 submatrix of the jacobian matrix, which has
five rows from the station-quadruple 043(1,2,3,4) and four rows from
Og (1,2,3,5). By considering itts.determinant as a functional with re-
spect to Xg, Yg, Zg (the coordinates of Qg-one of the points observed
by 05) and equating it to zero, one obtains a second degree surface as
the locus of the point Qs=(X5,Y5,Zg), that passes obviously through'
Q1,22,Q3,Q4, Py,P2,P3,P4 and the origin (0,0,0). For each selection
of the last four rows in the station-quadruple04z(1,2,3,5) the deter-
minant of the above table equated to zero, gives a second degree sur-
face as the locus of Qg5={Xg,Yg,Zg) that passes through the same nine
points. Provided these nine points do not constitute a singular con-
figuration, they determine uniquely a second order surface passing
through each one of them. Therefore the loci of Q5=(X5,Yg,25) (second
degrec surfaces) corresponding to all possible selections of four rows
in 047(1,2,3,5) coincide with the second degree surface determined by
the nine points Q1,Q2,Q3,Qy, P1,P2,P3,P4 and the origin, provided these
points do not constitute a singular configuration. Note that instead
of Qg one may consider any of the satellite-position points observed by
052(1,2,3,4).

Similarly, by considering the determinant of the above Table 6 as a
functional with respect to.Xg,Yg,Zg (the coordinates of Qg-one of the
points observed by 042(1,2,3,5)) and equating it to zero, one obtains a
second degree surface as the locus of Q9=(Xg9,Yg9,Zg), that obviously
passes through the points Qg,Q7,Qg, P,,P5,P3,P; and the origin (0,0,0}.
For each selection of the first five rows in the station-quadruple

052(1,2,3,4) the determinant of the above table being considered as a
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functioﬂal of Xg,?g,ZQ and equated to zero, gives a second degree sur-
face as the locus of ng(xg,Yg,Zg)that passes through the same eight
points. But there are infinitely many second degree surfaces through
eight points. Therefore the loci- of ng(xg,vg,zg} {second degree sur-
faces) corresponding to different selections of five rows in
052(1,2,3,4) are genérally different. However, instead of QQE(XQJYQ,ZQ
one may consider any other of the satellite—positionVpoints_Qbserved by
045(1,2,3,5). That is, the second degree surface that is _determined by
any selection of five rows in 05=(1,2,3,4), say thdsg corresponding to
QI!QZ’QSsQ4’Q5’ and any selection of three rows in 045(1,2,3,5), say
those corresponding to Qg,Q7,Qg, passes through all the satellite-
position points observed by the station-quadruple 043(1,2,3,4), through
the station-position points Py,P,,P3,Pg, and the origin. Therefore, if
the -station-quadruple 043(1,2,3,5) ,observes mbre than three satellite-
position points, the very same second degree surface that is deter-
mined by the nine points: origin, Py,P,,Pz,Pg, and any four saﬁel—
lite-pqsition pbints‘from the.station-quadruple 045(1,2,3,5), it 1is
determined completely also by Py,P,P3,Pg, origin, and any three satel-
lite-position points. Of course this is not the case in general with a
second degree surface.

In order to find out the determinantal loci of second degree, one
may proceed as follows. |

As it was pointed out before, each 9x9 submatrix being considered
for the determinantal loci must have at least three rows from eachl
station-quadruple and at most six rows; otherwise its determinant 1is

identically zero. Thus one considers all 9x9 submatrices of the
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jacobian matrix falling in four categories:

{a) The submatrices which have six rows from the station-quadruple
05:(1,2,3,4) and three rows from 0,4:01,2,3,5), |

(8} The submatrices which have five rows from 052(1,2,3,4) and four
rows from 045(1,2,3,5),

(3) The submatrices which have four rows from 0c%(1,2,3,4) and five
rows from 0,=(1,2,3,5), and

(§) The submatrices which have three rows from 05=(1,2,3,4) and six
rows from 045(1,2,3,5).

The determinantal loci for the satellite-position points observed by
the station-quadruple 055(1,2,3,4) will be considered below.

The determinantal loci for the satellite-position points observed
by the station-quadruple 045(1,2,3,5) result in exactly the same way.
One simply interchanges the roles of 0Og and 04 in the following discus-
sion for the determinantal loci of the points observed by 05=(1,2,3,4).

For the rank of the jacobian matrix to be less than nine the deter-
minants of the submatrices of all the categories ((a), (B), (Y), (&)
must vanish simultaneously. Thus the loci for the satellite-position
points observed by 052(1,2,3,4) resulting from the four categories must
coincide, since they refer to the same set of points.

From the category (a): Let Q122,Q35Q24,Q5.Q¢ be six points from

the station-quadruple 0¢=(1,2,3,4) and Q7,Qg,Qg from 0,=(1,2,3,5). By
considering the determinant of the submatrix corresponding to these
points as a functional with respect to the coordinates of one of the
points observed by 0:=(1,2,3,4}, say QGE(Xﬁ’Y6’26) and equating it to

zero, one has a second degree locus for QSE(XG,Yé,ZGJ, that passes
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through the points 01,Q2,Q3,Q4 Q5. P1.P2,P3,Fy and the origin =(0,0,0).
For ecach selection of three rows in 042(1,2,3,5) the }ocus of

Q= (Xg, Yg,Zg) passes through the same points.' Since this is a second
degree surface, it can be determined uniquely by any nine of its points,
provided they are not in singular configuration. Moreover instead of
Qﬁf(xé,Y6;Z6) one may take any other point from those observed by
052(1,2,3,4). Thus the locus of the satellite-position points observed
by 055(1,2,3,4), dictated by the category (o), is a second degree sur-
face whose equation can be given either by equating to zero the deter-
minant of a submatrix of the category (e}’ (being considered as a func-
tional with respect to the coordinates of one of the points observed by
0:=(1,2,3,4)}, or by'determiﬁing the second order surface which passes
through the nine points: origin, P1,Py,P3,Py and.any four satellite-
positioﬁ points, observed by 05=(1,2,3,4). Let this locus be denoted--
by Lg.

From the category (B): This category was considered 'in the above

given examﬁle; It was found that, for each selection of four rows in
042(1,2,3,5) the locus of the satellite-position points observed by
055(1,2,3,4j pasées through the points: origin, P;,P5,Pz,Py and four
from the points observed by 055(1,2;3,4). This locus is again a gener-
al second degree surface whose -equation is given either by equatiﬁg to
zero the determinant of a submatrix of the categoryl(B), (being consid-
ered as a functional with respect to the coordinates of one of the
points observed by 052(1,2,3,4)),0r by determining the second order
surface wﬁich passes through the nine points: origin, Py,P;,P3,Py and

any four points observed by 05=(1,2,3,4). Obviously this locus
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coincides with Lg of category {(y). Let it be denoted by Lg.

From category (Y): This category was also considered in that,

there (second part of the cxample) the discussion was for the locus of
the points observed by 043(1,2,3,5) and not 045(1,2,3,4). However, the
results are similar. Thus by transferring those results here one has
that, for each selection of five rows in 04=(1,2,3,5) the locus of the
satellite-position points observed by 055(1,2,3,4) passés through the
points: origin, Py,P,,P¢,P, and any three points observed by
0¢=(1,2,3,4). But eight points do not determine a general second degree
surface, i.e., there are infinitely many general second degree surfaces
passing through eight points. However, all the loci corresponding to
different selections of five rows from 04z(1,2,3,5) refer to the very
same set of points that is the points observed by 05=(1,2,3,4). There-
fore they must coincide with Lg and Lg, in casé of a determinantal
locus. That implies that the locus of the satellite-position points
observed by 055(1,2,3,4) is not a general second degree surface, but it
is such that any eight of its points determine it completely. The equa-
tion of this locus is given by equating to zero the determinant of a
submatrix of the category (y), (being considered as a functional with
respect to the coordinates of one of the poinfs observed by 053(1,2,3,4)),
For the existence of such a locus take the equation of Lg (ELg) and
verify that the same locus Lg is determined completely by any eight of

. R 3
its points. Let such a locus be denoted by Lg.

From the category (§): Let Q1,Q7,Qz be three points observed by

05=(1,2,3,4) and Q4,Q5,Q6,Q7,Q8,Q9 six points observed by 045(1,2,3,5).
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By considering the determinant of the submatrix ;orresponding‘to these
points as a functional with respect to the coordinates of one of the
‘points observed by 0::(1,2,3,4), say Q3=(Xg5,Y3,23), and equating it to
icro, one §btains a second degrec surface as the locus of Qz=(X3,Y35,23),
that passes through the points Q1,Q2,P1,P2,P3,Py and the origin =(0,0,0).
For each selection of six Tows in 045(1,2,3,5} the locus of
QSE(XS,Ys,ZS) passes throdgh the same seven‘pointsl Instead of Qs one
may consider any point observed by 05=(1,2,3,4). Thus the locus of the
sétellite—position points observed by 055(1,2,3,4} in this category,
passes through the points: origin, P1,P5,Pz,Py and any two from the
points observed by 0:=(1,2,3,4). The equation of this locus is taken

by equating to zero the determinant of a submatrix of this category (3§),
(being considered as a functional with respect to the coordinates of

one of the poiﬁts observed by 055(1,2,3,4)). This locus must coincide
with the loci Lg, Lg, and Lg of the previous categories, in case of a
determinantal locus. That implies that the locus of the points observéd
by 05=(1,2,3,4) is not a general second degree surface but it is such
that any seven of its points determinc it completely. Let such a locus.
be denoted by Lg. Forrthe existence of such a locus take the eguation
of Lg (ELg) and verify that the same locus Lg is determined completely
by any six of its points.

.The same discussion may be repeated for the determinantal loci of
the satellite-position points observed by 043(1,2,3,5), to find the com-
pletely analogousrloci Li, Li, Lg, ng In the general case, when both
station-quadruples 055(1,2,3,4) and 045(1,2,3,5) observe sixlbr more

points each, the determinantal locus is L% for the points observed by
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05=(1,2,3,4) and Lg for the points observed by 0,4=(1,2,3,5). It is
understood that these loci, Lg'and Lg, go together. That means that
for the rank of the jacebian matrix to be less than nine, both the
satellite-positioﬂ points observed by 05=(1,2,3,4) must lie on Lg, and
the satellite-position points observed by 043(1,2,3,5) must lie oﬁ Li.
It is possible Lg and Lg to coincide, That happens whenever they have
seven®* points in common; and since they do have in common the points
Py,P5,Pg,P and the origin, at least three satellite-position points
observed by all five stations are sufficient for the loci Lg and Lg to
coincide. Besides the general case when each quadruple observes six or
more points, one has some specific cases, which are those when one of
the quadruples observes either only three or only four or only five
points. Obviously, if one of the quadruples observes only three points,
one has to consider only the category (o), if it observes only four
points, one has to consider only the categories, (a) and (8), and if it
observes only five points, one has to consider the categories (a), (8}
and (Y]}.

After the second degree determinantal loci, one proceeds to con-
sider the linear ones. They may be taken from the expréssion (46) by
equating to zero each factor of the typical term of the summation. Thus
one has:

(i) From

X 1
= 0, (kpelis}u{s,D (51)
Xkp 1 6
Tseven points, Dbecause a§ it was said above (category (8))} Lg (and its

counterlocus Lg)} is not a general second degree surface, but it is such
that any seven of its points determine it completely.
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it is concluded that if all the satellite-position points, (observed
by both station quadruples), lie in a plane perpendicular to the Xx-axis
and passing througﬁ the point P»=(xp,yp2,%z2), the first column of all
9x9 submatrices i a zero column. Therefore that plane is a determin-
antal locus for all the points.

(ii) From

x3 vz 1
%k Yky 1 =0 (kz,k3€{j5}LJ{j4})_ : : (52)
Kes kg !

it is concluded that if all the satellite-position points lie in a
plane through fhe point pBE(XS'YS'ZSJ and perpendicular to the (xy)-
plane, the detefminants of all 9x9 submatrices are zero. Therefore

"~ each plane of the pencil of planes‘with axis the projection line of Pg3
to the (x,y)-plane is a determinantal locus for all the points.

* (iii) From

p,TEE o | T T T L (kyuks,keeldg D) (53)

| Xkg Ykg Zkg !
it is concluded that, if the satellite-position points observed by the
station-quadruple 055(1,2,3,4] lie in a plane through the point
P4=(Xx4,¥4,24) > then the determinants of all 9x92 submatrices are zZero.
Therefore, each plane of the sheaf of planes through the point Py is a
determinantal.locus for the satellitefposition points observed by

05(1,2,3,4).

—45-



(iv) From

X Y Z
k7 k8 ,k k k k .
957’ 8,%9, 7 7 7 » (k7.k3,kg€{J4}) (54)

Vig kg

ng Ykg Zkg 1
it is concluded that, if the satellite-position points, observed by the
station-quadruple 045(1,2,3,5), lie in a plane through the point
PSE(XS’YS'ZS)f then the determinants of all 9x9 submatrices are zero.
Therefore each plane of the sheaf of planes through the point Pg is a
determinantal locus for the satellite-position points observed by the
station-quadruple 04=(1,2,3,5).
(v) From either one of the following three relations
o -0, a3 0, a8 = 0,(ke,ks,keelis)), (55)
it is concluded that the plane (P,,P,,P3) is a determinantal locus for
the set of the satellite-position points observed by 05=(1,2,3,4).
(vi) From either one of the following three relations
KT -0, a8 <0, &9 = 0, (k7,ks,koelia)), (56)
it is concluded that the plane (P;,P;,P3) is also a determinantal locus

for the satellite-position points observed by 04=(1,2,3,5).

Note: 1In the last two cases, (v) and (vi), it is observed that, one may

have the same determinantal locus for different sets of satellite-
position points.
(vii) From
131 4, if.kje{isg}

by = 0, kyefjgl Udiql, & = (57)
5, if kyeljz)
18404
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it is concludéd that, if the satellite-position points observed by
055(1,2,3,4j lie in the plane (perS»PS) and simultaneously the satel-
lite-position poin%s observed by 045(1,2,3,5) lie in thc‘(Pl,P3,P4),
then the determinants of all 9x9 submatriées are zero. Therefore the
planes (PI,PS,PSJ aﬁd (PI;PS,P4) are simultaneousl} determinantal loci
for the satéliité—position points observed by 052(1,2,3,4) and ‘
0,=(1,2,3,5) réspectively.
{viii) From eithér one of the following two relations

k2 k3 k2,k3s{jS}LJ{j4}; - - (58)
: - . 4, if k2,k3e{js} respectively
M,¥ = 50 if ky, 3e{lg)} respectively
it is concluded that the plﬁnés (Pl,P2;P4] and (Py,P,P5) together con-
stitute a deterﬁinanfal locus for the.point—éets {J5) and {j 3} respec-
tively. These are the determinantal loci of the satellite-position'

points observed by two station-quadruples.

(b) Three, four or five statioﬁ;quadruples carry out all the observa-

It was said above that, if a determinantal locus of the previous
case of two station-ﬁuadruples occurs, then that is also a determinantal
locus for any other observational pattern with the same satellite-posi-
tion points. But if the previous case is non-singular, (i.e., its con-
densed jacobian matrix is of rank nine), that does‘ggﬁ_mean that this is
the case for the other patterns with the same set of satellite-position
points. Thus one has to search for the determinantal loci of the other
observational pattefns too.

These cases are treated in a similar way. For the determinantal

loci of second degree one may partition the set of all 9x9 submatrices
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of each of these cases in categories as before, while the linear deter-
minantal loci are taken again from the eipressions of the determinants

of all 9x9 submatrices as polynomials in the fundamental invariants, (see
7 Appendix F).

Consider the case where three station-quadruples carry out all the
ohservations. Without-loss of generality take the quadruples
0g=(1,2,3,4), 04=(1,2,3,4) and 0z=(1,2,4,5). The jacobian matrix of this
case is given by the first three row blocks of Table 4, For the set of
admissible constraints

X1:¥1,21s¥2522,23 = constant,
leave out the columns corresponding to these coordinates. For the deter-
minantal loci of this case one has to examine the zeroes of the determin-
ants of all 9x9 submatrices. Each 9x9 submatrix of this case has at
least one row from each station-quadruple, and it must have at least
three rows from any two out of the three quadruples, in order its deter-
minant not be identically equal to zero. Consider as an example the 9x9

submatirx on the following page.

Let {i5}, {Ja), {i3} be the sets of the satellite-posifion points
observed by the station-quadruples 05=(1,2,3,4), 045(1,2,3,5],
04=(1,2,4,5) respectively.

Second degree determinantal loci. Working as in the case of two

station-quadruples one finds for the general case, (when each one of
the three station-quadruples observes six or more satellite-position
points), that the second degree determinantal locus consists of three
second degree surfaces Lg,L4,L3, one for each of the sets {igl, {is}l,

{33} respectively. The locus Lg for the points {j5}, passes through
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Table 7. A 9x9 Submatrix of the Jacobian Matrix of the case when the three station-quadruples
052(1,2,3,4), 045(1,2,3,5) and 035(1,2,4,5) carry out all the Observations.



the points: origin, Py,P;,P3, and Py, and its equation is taken by
equating to zero the determinant of any 9x9 submatrix which has only
one row from 055(1,2,3,4), say the corresponding to QjSE(XjS,Yjs,st),
that determinant being considered as a functional with respect to
XjS,YjS,ZjS. This is a second degree surface which contains the points
{jgt. Similarly the locus Ly for the points {j4}, passes through the
points: origin, Py,P2,P3, and P5, and its equation is taken by equating
to zero the determinant of any 9x9 submatrix which has only one row from
04=(1,2,3,5), say the corresponding to Qj4E(Xj4,Yj4,Zj4], that determin-
ant being considered as a functional with respect to Xj4,Yj4,Zj4. At
last the locus Ly for the points {j3}, passes through the points:
origin, Py,P5,P4, and Pg, and its equation is taken be equating to zero
the determinant of any 9x9 submatrix which has only one row from
035(1,2,4,5), say the corresponding to QjSE(XjS’YjS’ZjS)’ that determin-
ant being considered as a functional with respect to XjS’YjS’ZjE° Argu-
ing as in the case of two station-quadruples, one- concludes that each of
the loci Lg,Ly,Lz is not a general second degree surface, but it is such
that any five of its points determinc it completely. Since in pairs
these loci have four points in common, if there exists a point observed
by all five stations, those loci have to coincide with each other.

Linear determinantal loci. The expression of the determinant of any

9x9 submatrix of the jacobian matrix of this case, as a polynomial in

the fundamental invariants is the following mess.
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' X3 Y3 1 .
01"02"'03 x2 1 4,05 ,06 n-hna,_ng ng ng ng
. (-1) Y, 1 2 Ps Bax ) fax bay
16(05.04.03)|=¥ ll *ng Tng 4 2743
*3] 2[?5)) . i xns Yn3 1
ny n; nz ng _
x ASAIASAZASASAZHASUIAsz (59)
where
nye{jstulistuisl,
ng,nsa{js}u{j_4},
nds“S’n6€{j5}LJ{j3},
n?s“Sy“QE{j4}LJ{je},

I 5, if n4,ng,ngefis} respectively,
K‘l,' |<2, K3 =;

3, if n4 ng,nge{jz} respectively,
4, if nq,ng,nge{jg} respectively,
3, if n7,n8,nge{j3} respectively,
5, if nye{lsl,
p=4{4, if nls{j4},

3, if njelizl,

5, if ny,nze{js} respectively,

a4, if n,,nze{Jg} respectively.

Na,Nec N nz,ng,n :
and Py P09 778279 are given by (49).

By equating to zero each factor of the typical term in the expression

(59) one obtains the linear determinantal loci.
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(i) From
) 1
X 1 5 4 3
ni
one concludes that the plane through the point Py=(x;,¥7.,Z7} and perpen-
dicular to the x-axis is a determinantal locus for all the points
{jgrufialulizl.

(ii) From

Xpo Yno 1 = 0 (np,nze{j shU{iglt {61)
Xng Yoz 1

one concludes that each plane of the pencil of planes with axis the pro-
jection line of Pz=(x3,y3,23) to the (x,y)-plane is a determinantal
locus for the poiﬁt—set {351Ul;4].
(iii) From
ﬁﬂ4’n5’n6 = 0, (ng,ng,ngelistulizh {62)
one concludes that each plane of the sheaf of planes through the point
Pg=(x4,¥4:24) 15 @ determinantal locus for the point-set Ggtuliz}.
(iv) From
QET’H&’HQ = 0, (n7,ng,ng {ig}uUlizh (63)
one concludes that each plane of the sheaf of planes through the point
Pg=(x5,yg,25) is a determinantal locus for the point-set {J4}U{ 3}.
{(v) From either one of the relations
n4,n5,n65{j5}tJ{j3} (64)
n4 ng ng S,if ng,ng,ngell slrespectively

by .= 0, Do = 0, By = 0 ¥q,Kkq,Kz=
K ? P4y * Sl 1272273 .
1 2 5 3,if ngq,ng,nge{l 3}lrespectively
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one concludes thaf thertwé planes (Py,P2,P3) and (P1,P;,Pg) constitute
simulfancously a determinantal locus for the point-sets {jg} and iz}
respectively.

{vi) From-either_onc.of the relations

| ny,ng,ngc{i 4 U 3) | (65)

ng 4, if n7,n8,nge{j4}fespeCtive1y,

ny n
ASAI = 0, 8535 = 0, 8537 = 0 [X],22,437 ) ) o
= | 3, if ng,ng,nge{) 3}respectively
one concludes that the two planes (Pp,P2,P3) and (Py,P,P4) constitute
simultaneously a determinantal locus for the point-sets {j4} and {j 3}
respectively.
{vii) From
nyef{istulisluiisz}
5, if njc{js}
n1 .o
Cagy = 0 wo= {4, if npellisg) (66)
3, if nie{i3}
one concludes that the planes {Pj,P3,P4), (P1,P3,Ps) and (Py,P4,P5) are
simultaneously a determinantal locus for the point-sets {is}, {j4}, {iz}
respectively.
{viii) From either one of the relations
n2,n3€{55}lJ{j3}" ' ' (67)

n3z . n3 5, if n2,nze{js} respectively
Azyy = 0, Bzyp = 0 lvy,vz = .
4, if np,nzc{ja} respectively

one concludes that the planes (P),P2,P4) and (P1,P2,Ps) constitute
simultancously a determinantal locus for the point-sets {js} and {j4}

respectively.
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For the cases when four or five station-quadruples carry out all
the observations, one proceeds in a similar way.

2) Determinantal loci for the station-position points

The only loci determined by the station-position points alone, in-
dependently from the satellite—position points are:

(a) The straight lines determined by pairs of station-position
points,

(b} The planes determined by triples of station-position points,
and

(c} The sphere determined by any quadruple of station-position
points, |

The sphere determined by any quadruple of station-position points
1s not a determinantal locus independent from the satellite-position
points, as it was seen above while treating the determinrantal loci for
the satellite-position points. One can realize what would happen if the
sphere of any four station-position points were a determinantal locus for
the fifth one, independently from the satellite-position points! Then
the configuration would be near singularity by fact; since the surface of
the earth on which the stations lie is approximately spherical.

For the determinantal loci consisting of straight lines, take first
the observational péttern when two station-quadruples, say 0g5=(1,2,3,4)
and 04=(1,2,3,5), carry out all the observations.

Considef the determinants

Mk

in the condensed jacobian matrix of Table 5.
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From the detefminants
A%g, A%4 (for any j)
of thc xz-column block.it is concluded that, if each of the point-triples
{Pl,PS,PA},' {P,,Ps,Pg}
is collinear, the xé—column becomes a zefo one, Therefofe the straight
line (Pl,PS)ris a determinantal locus for P, and Pg.

Similarly from the rest column blocks of the condensed jacobian
matrix of Table 5 one obtains the following. From the xz,yz-column block
it is concluded that, if each of the point-friples

(Py £5,P43s  (P],Py,P5)
is collinear the £3,y3-column block becomes a zero one. Therefore ther
straight line (P{,P,) is a determinantal locus for Py and Pg.

From the x4,y4,24-column block and xg,ys,Zg-column block, it is con-
cluded that, if the pdint-triple

(P1,P2.P3}
is collinear both of the last two column blocks become zero'ones. There-
fore the straight line determined by any two of the three points P1,P2,P3
is a determinantal locus for the third one.

These are the determinantal loci consisting of straight lines for
the specific observationallpattern when the two station-quadruples
055(1 2,3,4)'and 045(1,2,3,5) carry out all the observétions, and under
the set qf admissible constraints xy,yy,21,¥2,22,23 = constant. Noté
that, if at least one‘of the coordinates xj,yj,zy of P; were unconstrained,
oné would have also the straight line (P3,P3) as a determinantal locus of
P4 and Pg. Thus the sclection of the set of admissible constraints does.

affect this type of determinantal lock. In the following a general pro-

cedure of determining such a determinantal locus is described. This
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procedure is dictated by the form of the condensed jacobian matrix and
it is applicable to any number of stations andrany observational pattern.
It is observed that each determinantal locus of this kind is associated
with a station. In other words there are as many such  loci as stations,
Consider any station of the network, say P;. The determinantal locus
associated with this station is determined as follows. Let 04,05,...,0;
be the station-quadruples where-Pi participates in. By excluding P,,
there remains from each one of the station-quadruples 0j,...,0 a point-
triple. Let these triples be denoted by

ploplel . vip3,p3, ..., pkLPK, P .
Let also

€1)s €2, + vy Eg)
be the straight lines determined by any two of the three points of the

above point-triples respectively. Without loss of generality one may

take

e zPHPY), €0=02,00), ..., =005,
Then the strgight lines (el), (82], ces [ek] constitute simultaneously
a determinantal locus for the points P%,P%, ey P§ respectively.

For the case of five stations, since any two station-quadruples have
three station-position points in common, and consequently any two point—‘
triples from the above have two points in common, one must have:

(91)5(52)2 z{akj.

For the determinantal loci consisting of planes, one observes that,
if any two station-quadruples are coplanar, then their planes coincide,
for they have in common three station-position points. Therefore one may

proceed as follows,
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Suppose - that the five station-position points are coplanar.
Consider the determinants
A{k, (i,k=1,2,3,4,5)
expanded according-to the first row, i.e.
My = oikXy + BikYj *+ vikZj + Siks | (68)
whére aik» Bik, Yik, ik are functions of the station-coordinates oniy,
(compare with relations (33).

By putting

1/2

pi.k = E(C!.gk + ng + "(lk) (6 Slgn Df ﬂJk) (69)

one has (compare with (34) and (35))
j
Atk

oL = d, (for all i,k and j) (70)
ik

where d is .the distance of QJ_(X Z;) from the plane of the station-

i*73
position points.

Now conéider the general expression for the condensed jacobian
matrix, Table 4, aldng with the set of admissible constfaints introduced
previously, (i,e.; X1,Y1s21,Y2,22,23 = constant), and effect the follow-
ing rank-equivalent operations.

{i) Dividg cach row jg of 057(1,2,3,4) by the corresponding

ig
845,

(ii) Divide each Tow jgq of 045(1,2,3,5) by the.cbrresponding

Ig
A5y,

(iii) Divide each row jz of 03=(1,2,4,5 by the corresponding

i3
423,
' (iv) Divide each row j; of 05:(1,3,4,5) by the corresponding

A%%_,
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(v) Divide each row j; of 015(2,3,4,5) by the corresponding
Iy
823.

(vi) Subtract from xp-column, pgg/pgq5 times the xgq-column.

(vii) Subtract frem xg-column, 024/954 times the xg-column.

{viii) Add to xz-column, p35/p45 times the xy-column.
(ix) Add to yz-column, | p35/p45 times the ya-column,
(x) Add to xz-column, pz4/0g, times the xg-column.
(x1) Add to y3—§01umn, p34/p54 times the yg-column.

(xii) Subtract the first row in each station-quadruple from the
rest of the rows in it,

Then it is obtained:
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Table 8. The general expression for the condensed jacobian matrix for five
coplanar stations, transformed by rank-equivalent row-operations
under the set of admissible constraints Xj,¥y,2y,¥9,%9,%4 = Constant.




Note. After effecting the first eleven operations, each of the first
three columns in each station-quadruple, has the same entries through
out all the rowsrin that quadruple. Thus after the twelfth operation,
the first three columns have zeroes everywhere except in the first row
in each station-quadruple.

One verifies immediately that any three of the five non-zero rows
of the first three columns in Table 8 are linearly dependent. Consider

for example the first three non-zero rows, i.e.,

W =[(x2- X4)p25 (X4—X3)§§§- (y ysa ] (71)4

Wy 5[(x2-xs)§%%v (xs-X3)§§§a (v5-y3)pig] (71),

W3 =[ a3, b3, c3 ] (71)3
where |

az = xg + x243°25 ,  P53P24

Xe 22 &7
4p23945 55,354

]I

P35P43 _ P34P53

b -X 72

3 % "Mpygpys MSPogtys (72)
P35P43 P34P53
“YAp sPaz YSPEaPo3

il

c3

Note. In order to get these expressions for agz, bs, t3 take into account

the relation

Pik = -Pki - 03
and the identity

P23P45*024P35%0 25043 = 0 : (74)

The three rows Wy, W,, W; are dependent, since for

43 53
A = - ‘nd X = e e
= 23 ° 2 23 (75)
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one has _
AWy + Mgty = Wy ' (76)
Therefore when the five statioﬁs are coplanar the rank of the.matrix
of Table 8 is less than nine. That is, the plane determined by any three
station-position points 1s é determinantal locus for the rest of the

two station-position points.

1.4.4 The Case of Six and More Ground Stations

In the previbus two cases, (i.e., in the cases of four and five
groﬁnd stations) the discussion was more or less exhaustive because
the number of basic patterns of cobservation was small (1 in‘the
case of four stations, and & in the case of five stations). This will
not be the case for six and more ground stations, for the number of pat-
.terns of observation is large (see.Section 1.1.4, relation (7)). How-.
ever in order to find out the determinantal loci for any pattern of ob-
servation in the case of six and more stations, one may follow the same
routine work that was followed in the previous cases. That happens be-
causé, as in the case of five stations, one can form the condensed jaco-
bian matrix of ﬁny pattern of observation in the case of six or more
stations by putting-row—wise one after the other the condensed jacobian
matrices of station-quadruples. For example the condensed jacobian ma-
trix corresponding to the observational pattern when all six stations
obﬁefve simultaneously a set of satellite—position points, is formed by
putting row-wise one after.the other (regardless order)‘thé condensed
jacobian matrices of any three station-quadruples which havé three sta-
tions in common. The set of the satellite-position points for each one
of those three.station-quadruples being the very same set observed by all

six stations. Before proceeding further, a 1ist of all possible basic

observational patterns in the case of six stations, any
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.observational pattern consists of, is given below for reference purposes,

(see Section 1.1.4).

0465(1,2,3,5) {346} FSE(132!3$436) {JS}
0452(1,2,3,6)] lig5} |F42(1,2,3,5,6) | {js}

0365(1,2,4,5) {j36} F:;E(]-az; ,5:6) {j3}
0355(1,2,4,6) {j35} F25(1:3141516) {jz}
0345(1,2,5,6] {J34} F15(2:3341516) {j]_}

0245(1:315s6) {j24}
0535(1,4,5,6) | {ip5}
016=(2,3,4,5) {i1g }
0155(2,3,4,6) {j15}
0143(2,3,5,6) {314}
013=(2,4,5,6)) {jjz}
: 0125(3:4:536) {312} :

e . i —'I
List of the Basic Observational Patterns in the Case of Six Stations
Rab kot b
Quadruples | Observed Fivefolds | Observed Sixfolds Observed
(15) IPoint-sets (6) Point-sets (1) |Point-sets
0565(1’2:314) {j56} F6£(1:213,4.‘5) {36} EE(192:3:435.16) {j}

For the solution of the pfoblem of determining the coordinates of
the six stations, the observational pattern must consist at least of two
station-quadruples comprising all six stations, (say 0562(1,2,3,4} and
0345(1,2,5,6))? and at most all possible ones, i.e., fifteen
(c§ = 6174121 - 15).

Consider any ovservational pattern in the case of six stations, and
let {Q;} be the set of all the satellite-position points associated with
this pattern. if all six stations were observing simultaneously . the set
'{Qj},one would have the maximum number of observation equations possible
with the set {Qj}. That is, the set of the observétion equations of any
observational pattern in the case of six stations is a subset
of the set of the observation equations obtained when

all six stations observe simultanecusly the same set of
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satellite-position points. For a unique least-squares solution the rank
of the condensed jacobian matrix under an admissible set of constraints
must he'twelve._ Therefore; by considering the condensed jacobian matrix
as if all stations observed simultaneously the totality.of the satellite-
position points, no matter what the actual chservational battern is, and
checking its rank, if it is less than twelve, then this is the case for
the rank of the condensed jacobian matrix of the actual observational
pattern as well. However, if it is equal to twelve, the rank of the
condensed jacobian ﬁa£rix of the actual pattern may or may not be equal
to tweive. Note that the rank of the condensed jacobian matrix for six
stations can not be greater than twelve, for under an admissible set of
constraints it has tﬁelVe columns. In other words, if a determinantal
iocus of the observational pattern when all six stations observe simui-
taneously a certain set of satellite-position points occurs, then that
is also a determinéntal locus of any other observational pattern wifh
the same set of satellite—ﬁosition points. As it was said earlier, the
condensed jacobian matrix of the observational pattern when all six
stations observe simultaneously a certain set {Qj} of satellite-position
points is formed by'putting row-wise one after the other (regardless of
order) the condensed jacobian matrices of three station-quadruples having
in common three stations and each ébserving the same set {Qj}.

From the abové discussion, the reason why the obsérvational
pattern when three station-quadruples carry out all the observations
is so important,‘becomes obvious. The determinantal loéi.of this
observational pattern are searched in the remainder of the present section.

The symbols to be used are completely analogous to those previously

used in the cases of four and five stations., Thus the fellowing symbols
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will be used:
A;kg . For the determinant of fourth order, whose rows from the top

to the bottom are the affine coordinates of the satellite-position point

QjE(Xj,Yj,Zj,l) and three of the six station-position points except
P;isPr,Py, in order of increasing index respectively. For example
Xj Yj Zj 1
: X ¥ z 1
i o _ |74 4 4 , .
8237 (77)
Xg yg Zg 1
Xe Ye Zg 1
Also
X3 Yi Zy 1
X Y pA 1
ml:mZ,m3 m m m
sz sz Z’mz 1
Xms Yms st 1
where
i=1,2,3,4,5,6
and

mj jnp,mz any triple of indices of the satellite-position points ob-
served by statipn Pj.

The condensed jacobian matrix of the case when three station-quad-
ruples, comprising all six stations, carry out all the observations, 1is
given by the following Table 9. This case includes, as it was said above,
that when all six stations observe simultaneously all the satellite-

position-points. Take the station-quadruples

0565(1’2:334): 0465(172:314:5)s 0455(1,2}396)
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which observe the following point-sets respectively

¥ }, 3.

lggds  Ugelds  Ugs
If all six stations observe simultaneously all the satellite-position
peints, then |
Uggd = Uge? = Ugg? = 130
Adopt as in the previous cases the set of admissible constraints
X1,¥1:21:¥2522,23 = qonstant
For the determinantal loci the rank of the matrix of Table Qlis less than
twelve. Thus one has to examine the zeroes of the determinéﬁts of all
12x12 suﬁmatrices. It is repeated again hére, that these determinants
are invariants wifh respect to the affine transformations and rational
integral functions of the coordinates, therefore they have to be express-
ible as pol?nomials in the fundamental invariants (see Appendix F). 1In-
deed one obtains by Laplace expansion, as in the previous cases, the fol-

lowing expression for the determinant of a typical 12x12 submatrlx under

the above adopted set of constraints.

3y ¥y 1 .
X2 my Mg Fg  M7,M0g.Mg W10.M11 M2
40 o HJ
£(054.026,045) [+ ; (-1)°1%92*0 3% Xm, Ymy 3 P4 s P
|4(056.,0a6,0a5 Py 92(93(04))) Xmy 2 ™
*ny Yy 1
6 mg Mg Mzg Myy My
x ﬂzxuﬁsucﬁsnabagsﬂd5654565546A545554656455645ﬂ545 (79
where
L3} CU‘56}U{146}U{545}
mz,m3y :{jSG‘U(:MS}U{de}
ng,ms,mg eljggl
my,mg,mg cliag} S . (80)

mygemyamy2 cligg)
(56), if my,mz,mz t(j561 respectively,
4(lu),_(v-c),(n §)= {{46), if m],mz2,m3 eligg} respectively,

{45}, if my,my,my e{jgc? Tespectively.
1 sM2.03 £l)45
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Carry out all the Observations.
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Table 9. The Condensed Jacobian Matrix for $ix Stations when Three Station-Quadruples, 056’ 046 and 045,



1) Determinantal Loci for the Satellite-Position Points

Loci of second degree. Each 12x12 submatrix of the jacobian matrix

must have at least threc roﬁs from each of the three station-duadruples
and at most six rows. Working as in the case of five stations, one has
in the general case when each of the three station-quadruples observes
six and more sateilite-position points the following:

The second degree determinantal locus consists of three lock Lgg,
Lyg and Lyg for the sets of the satellite—posifion points {jgg}, {iggts
and{j,g} respectively;. The locus Lgg for the point-set {jgg}is a second
degree surface passing through the points: origin, Py,P;,P3,P4 and any
two points from {j56}', In other wqrds Lgg is not a general second degree
surfaée, but it is such that any seven of its points determine it com-
pletely. The equafion of Lgg is taken by equating to zero the determin-
ant of any 12x12 submatrix which has three rows from the station-quadruple
0565(1,2,3,4), the determinant being considered as a functional with
respect fo the coordinates of one of the satellite-position points ob-
served by'0562(1,2,3,4), (i.e., one from the set {jsﬁ}]. The locus Lyg
fof the point—set‘{jdé} is a second degree surface passing through the
points: origin, Pj,P2,P3,P5 and any two points from {546}' Thus Lgg
too, is not a genefal second dégree surface, but it is such that any
seveﬁ'of its points determine it completely. fhe equation of Lgg 1is
taken by equating to zero the determinant of any 12x12‘submafrix which
has three rows from the station-quadruple 0465(1,2,3,5), the determinant
being considered as a fqnctiopal with respect to the coordinates of one
of the satellite-position points from the point-set{j45}. The -locus Lyg

for the point-set {j45} is a sccond degree surface passing through the
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points: origin Py,P,,P3,Pg and any two points from {j,c}. Therefore

Lyg is not a general second degree surface but it is such that any seven
of its points determine it completely. The equation of Lyg is taken by
equating to zero the determinant of any 12x12 submatrix which has three
rows from the station-quadruple 045=(1,2,3,6), the determinant being con-
sidered as a functional with respect to the coordinates of one of the

satellite-position points from the point-set {j45}.

Note. It is stressed that the loci Lgg, Lgg, Lgg go together. That means
that if |

the points {j56} lie on Lggs

the points {j46} lie on Lyg, and

the points {jyg} lie on Lygs

simultaneocusly, then the rank of the jacobian matrix is less than twelve.
In other words the thrée loci Lgg, Lgg, and Lyg constitute simultaneously
a determinantal locus for the point-sets {jg }, (i ¢}, {iyg)} respectively.
In order to detect the existence of that determinantal locus one may
determine each of the loci Lgg, Lgg, Lgs as the surface which passes
through nine of its points and verify that the same surface is determined
by any seven of its points. Take for example the locus Lgg for the point-
set {j56}. This is a second degree surface which contains the points:
origin, Py,P,,P3,P, and {j56}, in case of determinantal locus. The locus
Lgg in general has the form
ay1X%+agyYPeags2e2a) oXY+ 221 5XZ+ 205 3Y2+ 221 4K+ 2a 94 Y 5 2a5q70agq = O
and any nine of its point not in singular configuration are sufficient to
determine the coefficients ajj. If the result of the estimation of ajj is

such that two of them are identically zero, that means that any seven of
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the poinfs of Lgg determine it completely. In case of determinantal locus
this must be the case for all three Lgg, Lgg, and Lgs
Linear ldci. For the linear loci one has to carry oﬁt the same routine
work, as in the previous cases, that is to equate to zero cach factor of
the typiéal term in the expression (79). Thus one has
(i) From
Xz 1 ’ :
1 =0, (mlﬁ_{jSG}U[j46]U{j45}] (81)

. Xml 1_" ‘ .
it is concluded that the plane through the point Pyz(x3,y2,22) and perpen-
dicular to the x-axis is a determinantal locus for all the satellite-
position points; i.e., {jss}LJ{j46}LJ{j45}.

{ii) From

XS Y3 1
sz .sz 1l = 0, (mz,ng{jsﬁ}U{j461U{j45} (82)
Xmg Ymz 1

it is ?oncluded tﬁat eaéh plane of the pencil of planes with axis the
projection line of Pz=(x3,y3,23) to the (x,y)-plane, is a determinantal
locus for all the‘satellite.—position points ({jge) Ulige)Uliyg )
(iii) From |
‘ 924,m5,m6 = 0, (mg,ms,mge {jo¢ ) _ | (83}
it is concluded that each plane of sheaf of planes through the point
{x4,y4,z4} is a determinantal locus for the points {j56}.
(iv) From
s'r)r;7 TSy, (m7,m3,mge{j4‘6l}). ‘ (84)
it is concluded tha; each plane of the sheaf‘of planes'through the point

Pez(Xg-Ygs2g)s i 2 determinantal locus for the points {j45}.
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(v) From
| D02 <0, (g g,myyamyge{igs D) (85)
it is concluded that each plane of the sheaf of planes through the point
Pe:(Xg.¥6s26), {1s a determinantal locus for the points {j45}.
{(vi) From
mla{%G}U{%6}U{h5}
(56), if mje {jgg !
my
823 = O, A )=(46), if mye {jq} (86}
(45), if mye {j45}
it is concluded that the planes (P;,P3,P4), (Py,P3,Pg) and (P;,P3,Pq)
constitute simultaneously a determinantal locus for the point-sets {j56}’

1,

Ui46 {345} respectively.
(vii) TFrom either one of the relations
mg,m3€{j56}lJ{j46}lJ{j45} (87)
(56}, if my,mz ¢ {j56} respectively
m3 m3 . . .
Ague = 0, Bghg = 0, (ve), (n3) = ((46), if mp,mz e {j, .} respectively
(45), if mp,m3 ¢ {j45} respectively
it is concluded that the planes (Pl,Pz,Pd_), (Pl’PZ’PS) and (PI’PZ’Pﬁ)
constitute simultaneously a determinantal locus for the point-sets {jc¢ !},
{346}, {345} respectively.
(viii) From either one of the relations
m4 m m .
b356 = 0, M45e = 0, G = 0, (mg,mg,mg < lig J) (88)
it is concluded that the plane (P;,P),P3) is a dcterminantal locus for

the points {jsﬁ}.

(ix} From either one of the relations

m7 m m .
bsje = 0, Dgge = 0, Agie = 0, (my,mg,mg € lye D (89)
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it is concluded that the plane (P1,P5,P3) is a determinantal locus for
the points'{jdﬁ}.
{(x) From either bne of the relations
b3l = 0, 8ghk = 0, achT = 0, mygmypimy; e (gg) - (90)
it is concluded that the plane (Py,P,,Pz) 1s 2 determinantal locus for
the points ligg-

2) Determinantal Loci for the Station-Position Points

As in the previous cases of four and five stations, one is interested
in finding out deterﬁinantal loci for the station-position points indepen-
dently from the satellite-position points. From the diécussion‘of the
determinantal loci for satellite-position points, it is_concluded that
there is no second degree determinantal locus for the station-position
points independent from the satellite—position points., Therefore one
proceeds to examine the linear ones, i.e., those consisting of straight
lines or planes.

The detgrminantal loci consisting of straight lines, aré obtained in
a way similar to that which was followed in the case of five stations. The gen-
eral procedure which was described there, applies here although it is not
needed, for the condensed jacobian matrix of the observational pattern
under discussion is available. Thus, under the set of admissible con-
straints x1,y},%Z1.¥2,22,23 = constant, one has the following.

(i) The straight line determined by P} and P3 is a déterminantal locus
for P4,Pg5 and Pg.
(ii} The straight line determined by P; and Py is a determinantal locus
for P4,Pg and Pg.
(iii) The straight line determined by any two of the three points Pl’PZ’PS

is a determinantal locus for the third one.
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If at least one of the coordinates xj,y;,z; of Py were unconstrained,
then the straight line (pZ’PS) would be also a determinantal locus for
ry,P5 and Pg.

Note: A general procedure of determining such a determinantal locus for

any number of‘stations and any observational pattern,was given within the
discussion of determinantal loci for station-position points in the case
of five stations,

For the determinantal loci consisting of planes one observes that,
since in this observational pattern the three station-quadruples involved,
(05¢3(1,2,3,4), 044%(1,2,3,5), 0y5%(1,2,3,6) have in common the three
station-position points P;,P, and Pz, if each of these quadruples is cop-
lanar, then their planes coincide. Therefore one may start off searching
for these loci by assuming all six station-position points are coplanar.

Assuming that the six station-position peints are coplanar, consider
the determinants

My, » (k2 = 1,2,3,4,5,6)
expanded according to the first row, i.e.,

Bikg = %ikeXj*BikaYi*VikeZ3*Sikn (91)

where oj1., B, Yikgs Sikg are functions of the station coordinates

only, {(compare with (33) and (68}]}.

By putting
2 2 2 172 . j
pike = elajyg + Bikp + vike) - (e = sign of af;)) (92)
one has
Aik
D;ki = d, (for all i,k,1 and j) © o (92)

where d 1is the distance of QjE(Xj,Y Zj) from the plane of the station-

js

position points.
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Consider now the jacobian matrix of Table 9 along with the set of

admissible constraints adopted above,

(i.e.,

“and effect the following rank-equivalent operations.

(i)

(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)

(ix})

(x)

(xi)
(x1i)

{xiii)

Divide each row j56 of 05g=(1,2,3,4) by the
Divide each row j46 of 044=(1,2,3,5) by the
Divide each row j45
Subtract from Xxz=-column, 0256/p456 times the xy-column
Suttract from Xp-column, Pouq/Pggq times the Xg-column
Subtraét from xp-column,
Add to x3z-column,
Add to ygz-column,
Add to xz-column,
Add to yz-column,
Add to x3z-column,

Add to yg-column,

P356/P456
356/P456
P346/P546
P346/P546
P345 /P645

P345/Pgas

of 045=(1,2,3,6) by the

times the
timés the
times the
times the
times the

times the

Pr46/Pg45 times the xg-column

X4 -column
y4-c61umn
Xg-column
Yg-column
xg-column

Yg~column

X1,¥1,2]1sY2,22:23 =constant},

3
corresponding A4gg

j

correSpohding Asjg

Jas

corresponding Aggg

Subtract the first row in each station-quadruple from the rest

rows in 1it.

Then it is obtained the following rank equivalent matrix,

(Table 10).

The column-block of the first three columns of Table 10 is indepen-

dent of the satellite-position points and has three non-zero rows,

356 P 356

wl [(XZ X4) 9456 (x4'x3)p—'a-5—€s (yzl')‘rf))p-m— 3
P 346 P 346

w2 [ (x3- XS)p54 (Xs—x339546’ (YS_YS)EEEEJ,
P 245 . 345 v 345
W3=[ (x2- x6)9645 (xg 13)5313, (Y6-¥3 )Q645]
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g{ X3 X3 Y3 X4 v4 z4 X5 ¥Ys 5 x5 Y6 ;]
=y P256 _, 1P3s56 e yP356 | oy, - - - -
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Table 10. The Transformed Condensed Jacobian Matrix for Six Coplanar Stations, when the

Three Station-Quadruples 056’ 046’ 0&5 Carry out all the Observations.



The determinant of the matrix of these rows, 1.e.,

ﬁl ’ X7 ¥3 1
det [Wo| = 1 P256P346P345 (xy-%4) [Xg ve 1
2| T Pi56P5a6P6ds | R e
x3 vz o
-P246P356P345 (x5-x5) |xg4 ¥4 1 . (95)
X Yo 1
X7 Y3 1
+P245P356P 346 (x5-%¢) x4 ¥g 1

is not identically zero. Therefore the plane determined b; any -three
gtation-position points is not in general a determinantal locus for the
rest three points.

Since det[ﬁl,ﬁz,ﬁs]T is invariant under affine transformations (see
Appendix C) by equating it to zero one may interpret it geémetrically._.
As a matter of fact by considering that determinant as a'functional‘ﬁith
respect to'thé coordinates of one of the station-position points, say
XgsYgr 26 and equating it to zero, one has a second degree planar locus
for P6z(x6,y6,z6). That locus passes through the points Py,P,,Pz,P4,Pg
as if is verified immediately. If the pléne of the statibn—positidn
points has some specific positions with respect to the coordinate system,
the determinant (95) ‘is iero no matter where the six points lie in it.
~Thus if the plane of the station-position points is perpendicular to the
(x,y}-plane, whénce the projections of tﬁe six station-position points

on the x,y-plane are collinear, then the three determinants on the right
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hand side of (95) vanish. Therefore the plane determined by any three
station-position points is not a determinantal locus for the other points,
unless in addition to coplanarity condition the determinant (95) vanishes.
Remark. For any observational pattern in the case of six stations, con-
sisting of at least three station-quadruples, the plane determined by any
three station-position points, is not a determinantal locus for the other
groups of three.

Suppose now that one has the case of n stations. From the procedure
of getting the condensed jacobian matrix, it is concluded that the con-
densed jacobian matrix of the observational pattern when all n stations
observe simultaneously a certain set {Q;} of satellite-position points,
is formed by putting row wise one after the other (regardless order) the
condensed jacobian matrices of (n-3) station-quadruples which have in
common three stations, and each one of which observes the very same set
{Qj} of satellite-position points. Therefore the condensed jacobian
matrix of any observational pattern (for any n>4) is formed by putting
row wise one after the other, the condensed jacobian matrices of station-
quadruples, and consequently for the determinantal loci one may repeat
the same routine work rhat was followed in the previously treated cases.

From the procedure of finding out the determinantal loci of an obser-
vational pattern which was established in the previous discussions via
forming the condensed jacobian matrix, one may describe géneral procedures
of finding the determinantal loci of an observational pattern, without
having to form the condensed jacobian matrix These general proce-

dures are described in the following section,
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1.5 Synopses
Let
{Pi}E(Pl,Pz,...,Pn), ie{il}=(1,2,...,n)
be a set of ground stations, observing in some observational pattern a
certain set
(Qj1=(Qp,--,Qy)» JeliI=(1, 2,5 05m)
of satellite-position points.

I. Station Quadruples Composing the Observational Pattern

Each satellite-position point Qy is observed by ) stations, where
4< xsn.
The observation of Qj by A stations is equivalent to the observation of
Qj by (x-3) station-quadruples formed from the X stations and having in

COmmon three stations. Note that there are

¢l o AL 20-D(-2)
(A-3) 13! 6

selections of (A-3) station-quadruples formed from X stations and having
in common three stations. Therefore the set of station-quadruples com-
posing an observational pattern is not unique as long as there are satel- -
lite-position points observed by more than four stationms.

For the total number of the station-quadruples composing an observa-
fional pattern one hasrtp group the totallity of the satellite-position
points in groups, each one of which is observed by the saﬁe stations.
Thus, suppese that

{Qj}l’ {QJ }2,...,{Qj b

be sets of satellite-position points observed by
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stations respectively. Tt is understood that
Qji1 (@3t -+ {Qj1=1Q51=(01,02,--.,Qm)-
Then the totality of station-quadruples for that observational pattern is
k
K = ()\1*3)+(l2—3]+"'+(hk—3) = 151(Ai—3)
or

k
K= I xi -3k,
i=1

For example, if there are only four stations, then all the satellite-
position points are observed by the same four stations and in this case
k=1, that is

{Qj}IE{Qj}=(Q1,Q2:--':QmJ-

The formula for K above gives

K=4-3 = 1.

II. The Condensed Jacobian Matrix of a Station-Quadruple

This is given in Table 1 (see Section 1.4.2). The same table is re-
called here with a change in the indices of the determinants Ai. Thus
instead of the subindex i which indicates the station whose coordinates
do not appear in the determinant, one uses the indices of the stations
whose coordinates appear in the determinant. Without loss of generality
take the station-quadruple P,P5,Pz,P4. Then the following identities

exist (see relations [27]).

J Jopd -, I
8234, 8270134, 8378724, 8458123,

HI

0

and Table 1 is written
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X1

Y1

x2

b

z2

X3

Y3

z3 1

X4

va

24

+

| (Xy-xz) 8334

»

(Y5~Y116334i(Zj-zx)ﬁisai(Xj-leﬂ134§(Yj'Yz)°

Z] I
4
1

.

134!

(Zj*=215134

+

X;-x3)4] 24

+

(Yj‘Y315124l(Zj'=3)°{24

.

(xj‘x4)A123;(Yj'y4JA123

i(25'34)'5{23

Table 1.




Notes. (1) The condensed jacobian matrix of a station-quadruple has four
column-blocks, one for each station, With three columns each block corres-
ponding to the x,y,z-coordinates of the respective station. (2} All
three-column blocks have the same form. Thus in general the three-

- column block corresponding to station P; in the condensed jacobian matrix
of a station-quadruple including Py, say Py,Pg,Pi,Pp,(k<f<i<m} is given
by | |

. j .
€ (X5-%1) Mgmo e(V;-yi) Bgms  ©(Z5-25) Mgp s

where ¢

+1, according to the following stipulation.

+1, if 1 is first or third in order among i,k,%l,m
{-1, if i 1is second or fourth in order among i,k,%,m
(3) The condensed jacobian matrix of a station-quadruple has as many

rows as satellite-position points observed by that quadruple.

II1. The Condensed Jacobian Matrix of any Observational Pattern

The condensed jacobian matrix of any observational pattern is formed
by putting row wise one after the other (regardless order) the condensed
jacobian matrices of the station-quadruples composing that observational
pattern.

A symbolic scheme of thc condensed jacobian matrix is given below,

which is useful for the descripfion of the general procedures of deter-
mining the determinantal loci without having to write down the explicit
form of the condensed jacobian matrix. That is established through the
following three examples.

Example 1. Let an observational pattern in the case of five stations

(P1,P,,Pz,P,) be composed by the station-quadruples
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01234=(P1,P2,P3,Pg), and 0y535=(P1,P2.P3,Ps)

Then the condensed jacobian matrix may be written in the following sym-

bolic way.
O1234] . [P1 P2 P3 Pg O
01235 Py P Pz 0 Py

Example 2. Let an observational pattern in the case of six stations
(P1,P5,P3,P4,P5,Pg) be composed by the station-quadruples

012342 (P1,P2,P3,P4), 01256(P1,P2,P5,Pg), 03456 (P3,P4,P5,P6)-
Then the condensed jacobian matrix may be written in the following sym-

bolic way.

01234 Pp P2 Pz Pg O 0
01256 = |P1 P2 0 0 Ps P
03456 6 0 Pz Ps Ps Pg

Cxample 3. Let an observational pattern in the case of six stations be
. composed by the station-quadruples
012342(P1,P2,P3,P4) » 012357 (P1,P2,P3,P5)
012565 (P1,P2,P5,Pg) s 023452(P2,P3,Py,Ps5).

Then the symbolid scheme of the condensed jacobian matrix is

Bazséﬁ SRS TS PR £ S 0 0]
01235 | ; Pp P2 Py 0 Ps 0

01256 Py P 0 0 Pg Pg
02345 | | o Py Py P P O |

IV. Definition of the Determinantal Loci

Consider an observational pattern invelving n stations. Its con-
densed jacobian matrix has n three-column blocks, i.e.,'3n columns,

The rank of this matrix is at most
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Therefore for a unique least squares solution of the problem, one has to
introduce six relations independent from each other and the rows of the
condensed jacobian matrix. In the previous discussion such relations
were introduced as follows:

X15Y1s215Y2s22,23 = constant.

A determinantal locus is that relation between the coordinates of
the satellite and/or station position points for which the rank of the
condensed jacobian matrix is less than p = 3n-6 = 3(n-2), of that is the
same, that which annihilates the determinants of all (3n-6)x(3n-6) sub-
matrices,

Remark: For the determinantal loci one has to search for the zeroes of
the determinants of all (3n-6)x{3n-6} submatrices. Without loss of gen-
erality adopt the admissible set of constraints.

X1:¥15215Y2522,23 = constant.
Then in order the determinant of a (3n-6)x(3n-6) submatrix not to be
identically zero, it must have from each station-quadruple a minimum num-
ber of rows. That minimum number of rows, depends upon how many stations
out of the four in that quadruple do not participate in any other station-
quadruple of the same ohservational pattern, and how many coordinates of
those stations are unconstrained. It varies from six, when two uncon-
strained stations or three stations whose three appropriate coordinates
are constrained, or four stations whose six appropriate coordinates are
constrained, do not participate in any other station-quadruple of the
same observational pattern, to one when all four stations of the station-

quadruple in question participate in at least one more station quadruple
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of the same observational pattern. This remark is of importance for the
second degree determinantal .loci for the satellite-position points, (see
the following synopsis V).

V. Description of the Determinantal Loci

" The determinantal loci are classified as follows.
1.. Determinantal loci for the satellite-position points
la. Determinantal loci of secend degree.
1b. Linear determinaﬁtal loci.
2. Determinantal loci for the station-positioﬁ peints.
2a. Determinantal loci consisting of planes.
2b. Determinantal loci consisting of straight lines.
Remark : ‘The determinantal loci for the station-position points are inde-
pendent from the satellite-position points, and so one does not have sec-
ond degree determinantal loci for the station-position points.*
In the following, each of the above classes of detgrminantal loci
is described in a general way for any number of stations and any observa-
tional pattern, without utilizing the explicit expression of the condensed
- jacobian matrix, but only the symbolic one, (see synopsis III above).

1. Determinantal loci for the satellite-position points.

la. Determinantal loci of second degree.

Let an observational pattern involving n  stations
Py,Poy.--uPy, {(nz4)
a set of m satellite-position points.
Q5 = (Q,Q--+5Q5- -5 Qs (M2 (3(-2)/(-3)]),.

~and being composed by a certain set of station-quadruples,

*The second degree determinantal loci involve both satellite and station-
position points. :
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[n/4]*+a<pen!/(n-4) 14!

07,05,...,0

b 0, if n/4 is an integer

o = .
1, if n/4 is not an integer

Let also

Q) (Q) Q)
be the sets of the satellite-position points observed by the station-
quadruples 0p,...,0Q, respectively. It is understood that these sets con-
stitute a decomposition of the set.{Qj}, i.e.,

(Qj}ulQylU--+ UlQly = (g5} = (Q1,Qzs - +5Q55 -+ 5 Q) -
Then oné may determine a set of p second degree surfaces (some of which
or even all éf them may coincide),

$1,85,.:+,8 |

P

one for each station-quadruple, such that they constitute simultaneously

a determinantal locus for the sets of the satellite-position points
Qs Q) oo @)
respectively. That is, if
{Qj}lssl, {Qj}zssz, e, {Qj}pESp f
then the determinants of all (3n-6)x(3n-6) submatrices of the condensed
jacobian matrix vanish, and consequently the rank of that matrix is less
than 3n-6.
One now proceeds to describe the procedure of determining the second
degree surface
8,, (v=1,2,...,p}

corresponding to the station-quadruple 0,. For some fixed value of v let

0,20 p54=(Pq,Pr,Ps,Pe)s @,T,5,te(1,2,...,0)

*The square brackets indicate the integer part of the bracketed number.
tThe symbol € stands for expression '"belongs to'.
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The dgtgrmination of tﬁe'surface Sv’ depends upon the minimum number of
rows allowed by the observational pattern to be taken from the quadruple
Ouzoqrst while forﬁing the (3n-6)x(3n-6) submatrices, in order that their
determinants not be identically zero. That minimum number of rows
depends upon how many stations out of the four in that gtation—quadruple,
do not participate in any other station-quadruple of the same observa-
tional pattern, and how many coordinates, if any, of those stations are
unconstrained. It varies from six to one as follows:

It is.six, when (a) two stations of the quadruple without
conétrained coordinates, or (b) when ;hree stations of the quadruple
with three appropriate* coordinates constrained, or (¢) when all four
stations+ of the quadruple with six appropriate coordinates constrained,

do not participate in any other station-quadruple of the same obser-

vational pattern.

It is five, when two stations of the quadruple, one with uncon-
strained coordinates, and the other with one out of the three coordinates
constrained, do not participate in any other‘station—qﬁadruple of the
same observational pattern. It is four, when two stations of the quad-
ruple, one with unconstrained coordinates, and the other with two out of
the three coordiﬁates constrained, do not participate in any other
station-quadruple of the same observational ﬁattern.

It is three, when just one station of the quadruple, with uncon-
strained coordinates, does not participate in any other station-quadruple

of the ‘same observational pattern.

*By appropriate one means that these constraints are members of an ad-
missible set of constraints.

" +In that case the quadruple is independent from the others if there
T exists any.
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It is two, when just one station of the quadruple with one out of its
three coordinates constrained, does not participate in any other station-
quadruple of the same observational pattern.

It is one, when oﬁe station of the quadruple with two out of its
three coordinates constrained, does not participate in any other
station~quadruple of the same observational pattern.

lIn case all four stations participate in other étation—quadruples
of the same observational pattern, one may form {3n-6)x(3n-6) submatrices
which do not include any row from that station-quadruple. That is why
the minimum number of rows from that quadruple is one, even in this

case.

After the description of determining the minimum number of rows al-
lowed by the observational pattern to be taken from a station-quadruple
0,, while forming the (3n-6)x(3n-6) submatrices, in order their determin-
ants not to be identically zero, one proceeds in the description of de-
termining the second degree surface S,, as the locus of the satellite

position points

{QJ I
observed by the station-quadruple
045 00rqr = (PgsPr,Pg,Pe).

The surface S, passes through the points: origin, Pq,Pr,PS,Pt and the
satellite-position points observed by the station-quadruple OvEqust. Let
1 be the minimum number of rows from the station-quadruple 0. Then the
surface S, is such that it is determined by the points: origin,
Pq,PrsP5,Pr and any (1-1) satellite-position points. Since a general
second degree surface entails nine of its points to be determined, it is

concluded the following.
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(i) Fort =6 or 5, 5 is a general second degree surface,

(ii) Fort =4,3,2,1, S 1is not a ggneral second degree surface, but
it is such tﬁat any eight, seven, six, five of its points respectively
determine it completely.
Remark: The determination of a second degree surface by ﬁiﬁé of its
points, is a very well known problem in analytic geametry; One has to deter-
mine the coefficients of the analytic expressionrof a gengral second sur-

face, i.e.,
2 2 2, ' _
' allx +322Y +3.332 +2a12XY+2&13XZ+2a23YZ+2a14X+2a24‘f'+2a342+a44 = 0.

If the second degree surface is not a general one, then some of the coef-
ficients in the above expression are identically equal to zero.‘

Thus the description of the procedure of determining the second de-
gree determinantal locus is complete. Note that for a given observation-
al pattern there exists just one second degree determinantal locus, con-
sisting of the second dégree surfaces 51,82,.f.,8v.

1b. Linear determinantal locil

(a) Each plane of the sheaf of planes through a station Pj, with

none of the coordinates is constrained, is a determinantal locus for the

satellite-position points observed by all the station-quadruples where
the station P; participates in. [If one out of the three coordinates of
P, is constrained, say Z;j, then instead of the planes of the sheaf through

P:, one has the planes of the pencil whosec axis passes through P; and is

i3
perpendicular to the (x,y)-plane.
If two out of the three coordinates of P; are constrained, for example

Yi»Zi, then instead of the sheaf of planes through P;, one has the plane
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through P, and perpendicular to the x-axis.

(R} Another category of linear determinantal loci for satellite-
position points consists of scts of planes determined by the station-
position points. Each determinantal locus of this category is associated
with a station. In other words there are as many determinantal loci of
this cétegory as stétions. Consider any station of the network, say Pj.
The determinantal locus associated with this station is determined as
follows. |

Let

01,09,...,0¢
be the station-quadruples where P; participates in, and

{Qj}l,{Qj}z,...,{Qj}k
be the sets of the satellite-position points observed by those station-
quadruples respectively. Excluding station-position point P;, the re-
maining three station-position points in each one of the station-quadru-
ples 0,,0,,...,0, determine a plane. Let these planes be denoted by m,
Tps.«xsM- Then the planes TysTosens Ty constitute simultaneously a deter-
minantal locus for the satellite-position point-sets {Qj}l,{Qj}z,...,{Qj}k
respectively. That is, if

{Qj}l £ T

{Qj }2 £ TT'2

{QJ }k € Tk
there is no unique least squares solution.
Remark: In case of a determinantal locus of this category, say that

associated with station Pj, the three columns of the condensed jacobian
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matrix correSpondlng to the coordinates xj,yi;zj of Pj become zero ones.

These are the determinantal loci for the satellite-position polnts.
One might add to the above quoted determinantal loci, the totality of
the straight lines in space. tlowever, these are included in the above
quoted case (o), for then there exists always a plane through the line
in space and a station-position point.

2. Determinantal loci for the station-position points.

2a. Determinantal loci consisting of planes.

It has been demonstrated in previous discussions that in the case
of four stations, the plane determined by any three out of the four
station-position points is a determinantal locus for the fourth one..
Tﬁat is, if the four station-position points are coplanar there is no
unique least squares solution.

Also in the case of five stations, the plane determined by any
three out of the five station-position points is a determinantal locus
for the other two. That is, if the five sfation—position points are cop-
lanar there is no uniqué least squares solution.

In the case of six stations it has been demonstrated that, if the
observational pattern is composed of at least three station=-quadruples
there exists in general no determinantal locus consisting'of planes. In
the specific observational pattern composed by three station-quadruples
hav1ng in common three stations, the plane detérmined by any three out of
the six station- p051t10n points is a2 determlnantal locus for the other
‘three station-position points, provided that plane is perpendicular to
the (x,y)-plane, undgr the admissible set of‘consfraints: |

X{,Y1,21sY2s22,23 = constant. A remarkable note may be drawn from.this
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specific case. It is observed that the selection of the coordinate sys-
tem maf create a determinantal locus, which otherwise would not exist.
Thus if in the case of six coplanar station-position points, one selects
a coordinate system with the (x,y)-plane perpendicular to the plane of
the station-position points, then the observational pattern composed by
three station-quadruples with three stations in common, and under the set
of constraints: xl;yl,zl,yz,zz,zs = constant, does not yield a unique
least squares solution. In general this observational pattern (involving
six coplanar station-position points and being composed by three station-
quadruples with three stations in common), does not yield a unique least
squares solution, if in addition to the coplanarity condition, the gener-
al second degree planar curve, determined by any five out of the six
station-position points, passeé through the sixth one, (see Section
1.4.4).

It should be noted that éven in the case of six stations, one may
encounter observational patterns where do ecxist determinantal loci for
the station-position points consisting of planes. These observational
patterns are composcd hy-two station-quadruples. Consider for example
the observational pattern whose the condensed jacobian matrix has the

following symbolic schéme.

G1234 Py P Pz Py O 0

01256 Pp P2 0 0 Pg Ps
For this observational pattern the plane determined by any three out of

the four station-position points of either station-quadruple (0,34 and/or

01256) is a determinantal locus for the fourth one.
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In a general oBservational pattern, the plane determined by any
three out of the four station-position points of a station-quadruple, is
a determinantal locus for the fourth one, if two stations of that quad-
rup}e_with unconstrained coordinates, or three stations Qith three appro-
priate coordinates constrained, or four stations witﬁ six appropriate
coordinates constrained, do not participate-in any other station quad-
‘ruple of the same observational pattern.

In the observational pattern involving n stations (n26) énd being
composed by v station-quadruples (véS) which have in cémmon three sta-
tions, provided the statidn-position points are coplanar, the second de-
gree planar curve‘detefmined‘by any five station-pésition points, is a
determinantal locus for the other (n-5) ones. 7

2b. Determinantal loci consisting of straight lines

Each of these determinantal loci is aésociated with a'statién. in
other words there are as-many determinantal loci of this type as stations.
‘The general proceddre of finding out such a detérminantal locus is ana-
logous. to that which was described above for the satellite-position
points,

Consider any staticn of the network, say Pj. The de;erminantal
locus for station-position points associated with this station is deter-
mined as follbws.

Let

01,05,...,0¢
be the station-quadruples in which Py participates. By excluding Py,
there remains from each one of the station-quadfuples 01,02,...,04 a

point-triple. Let these triples be denoted by
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1 1 1 2 2 2 K ok Xk
{p], P, P3}, {P], P2, P3}, ..., {P], Py, P3l.

Let also

(e1), (e2), ..., (ek)
be thé straight lines determined by any two of the three points of the
above point-triples respectively. Without loss of generality one may
take

(=Pl Pdy, (e,0=(P%,P%), ..., (e )=(P%,PK).
Then the straight lines (e;), (e3), ..., (gg) constitute simultaneously
a determinantal locus for the station-position points Pé, cens P% respec-
tively. That is, if each one of the point-triples

e}, pd,ply, (0%,03,0%), ..., (PY,PK,PK)
is collinear, the xj,yj,zj-column block of the condensed jacobian matrix

becomes a zero one, and there is no unique least squares solution.
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2. DETERMINANTAL LOCI FOR RANGE-DIFFERENCE NETWORKS

2.1 Introductory Remarks

The present discussion refers to the "continuously' measured range-
_differences. This observational mode is that of geoceiver - a néw com-
pact and portable device for satellite tracking. |

Let Qj, (j=0,1,2,...,m) be a set of satellite-position points.at fhe
instances tj, (j=0,1,2,...,m), and P., (i=1,2,3,4,...,n) bé arsef of

ground stations observing by means of geoceiver.

Figure 3

Let also Si be the range from P; to Qj, and Sik the range difference be-

| k .
tween the ranges S% and S, i.e.,

-}k k j . o )
s1°° = 85 - 81, (k) | (96)
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When station P; observes by means of geoceiver the satellite-position

points QO, Ql’ QZ’ cens Qj, Voo Qm (see Figure 3) then the observed

quantities are the range differences:

50,1

1,2
i 54

2,3 i,i-1 m,m-1
R s{ s eees ST .

It is noted that these symbols stand for the true values of the denoted
quantities. Because of the "continuity" one may find the range differ-

ences of one range, say (PiQO)ES? from each one of the others. Thus one

has
a0, 0,1, 1,2 ic1,5 - g0, 3 ok-1,k (e
Si = 8]+ 87h #5004 L4 Si s. + kEI s$ , (§=1,2,3,...,m)
(97)
or
0,3 ' 0  J _k-1,k .
$;°7 = 8 -5 = Iy Si , (i=1,2,...,mk. (98)

The right hand part of (98) is known from the observations. One may sub-

stitute the set

0,j 0,1 1,2 2,3 i-1,j -
CHANR T TPTURIE T Craa S SRR e by,
{99}
by the equivalent one
0,3 0,1 0,2 0,3 0,3 0,
(i }5-1,2,...,m = {8i"7, 8377, 877, ..., s, L., ST (100)

Indeed the set (99} is equivalent to (100) because if the members of the
set (99), (being conﬁidered as functional of the coordinates) are alge-
braiclly independent, this is also the case for the members of the set
(100), for each member of (99) is a linear combination of members of (100)
As a matter of fact

i-1,7 . <0,j 0,j-1
si-1J = g0:3 . g0.] (101)
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In the following the set'{S(-l)’]}j=1 2 m 1S considered. Let

QjE(Xj,Yj,Zj), j=0,1,2,...,m

piz(xi:yi!zi),.i=1:23';-:n°

S o
5507 = 8] - 5§
1/2

/2 . 1
[(xo'xi)2+(Y0‘Yi]2+(ZO-Zi)Z]

. 1
‘[(xj'xi)2+(Yj“Yi)2+(Zj'Zi)2] -

1

(102)
Since at each event three unknown coordinates are introduced (i.e., the
_coordinates‘of the satellite-position point being observed), at least four

stations must observe simultaneously*.

2.2 The Case of Four Ground Stations

Let Pi=(xi,¥i,21)» (1;1,2,3,4) be four stations observing simultane-
ously by means of geéceiver‘the satellite-position points Qj,(j=1,2,..,m).
Then one has a set of 4m simultaneous equations of the form (102), with
3(m+4) unknowns, six of which are to be constrained in order to establish
the coordinate system, so that there actually are 3(m+2) unknowns;

For a unique‘least squares solution the rank of the jacobian matrix
Jy of the 4m functions (102) must be equal to 3(m+2), i.e.,

rank Jy = u = 3(m+2). ' . . (103)

As in the case of range networks, one may condensé+ the jacobién

matrix. The condensed jacobian matrix will be obtained here via elimina-

tion (see Appendix E). Take the differential form of (102}.

*This must be the case for geometric satellite geodesy.

+The term condensed jacobian matrix is used conventionally throughout
this work, and it is not a general mathematical concept. It is used here
on the grounds that the determinants of the submatrices for the determin-
antal loci (not of any square submatrix) are equal to the corresponding
ones of the condensed jacobian matrix.
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0,3 X)X+ (Vs ys . _z.)dZ.
ds;* 7= j[(x3 x; )X+ (¥5-y;)dYy+ (25-24)dZ4]
1

w

S R0 g (UL YO gy BTHL L 20 E gy,
or

0,;_ -
ds;’-= aijde+bidej+cidej-(aij—aio)dxi(bij—bio)dyi—(cij~cio)dzi {104)

Note that dX,,dY,,dZg= 0, for XO,YO,ZO may be chosen arbitrarily. How-
ever the choice of Xg,Yg,Zp 1s going to be counted for the constraints in
order to establish the coordinate system.

Relations (104) render the mapping of the differential space spanned
by dX~,de,de,dxi,dyi,dzi, (i=1,2,3,4;j=1,...,m) into the differential
space spanned by dsg’j, the matrix of the transformation being the jaco-
bian matrix Jy. Being interested in the rank of the matrix of a linear
transformation, it is sufficient to consider the kernel of that transfor-
mation.

Thus one takes

aijdxj+bidej+cidej—(aij—aio)dxi-(bij—biojdyi-(cij—cio)dzi = 0 (105)
where

ajj,bjj,cij - the direction cosines of P; j

aj0sbjg-¢jp - the direction cosines of PoQp-

By grouping the 4m equations (105} in m groups, one group per value of
the index j, and eliminating from each group the differentials dXj,dYy,
de, one comes up with the resultant system of m simultaneous equations,

the matrix of the coefficients of which is what has been called condensed

jacobian matrix. That is given in Table 12, where

al, (i=1,2,3,4; j=1,2,..,,m)
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dxl

d)l'1

dzl -

dx2

dyz

dzz'

dX3

dys

dz:r’

i dl4

dy,

dZ4

: (31j -a1q) A{

(blj‘binAI

(¢1j‘°10]Ai

'(ﬂZj'azolﬂg

-(bz5-b2p} 55

~(°zj-°2o)ﬁi

(33j‘330)ﬁ%

(bsj-bso)ﬂg

(CSj'°30)ﬁg

-(agj-240)8

b

a

- (b4 j-ba0) 8}

-{caj-C4o)A£

Table 12. The Condensed Jacobian Matrix for Four Stations "Continuously" Observing Range Differences.




stands for the same determinant as in the case of range networks. To

recall it, A% is given

Xj Yj Zj 1

Xl yl Z.l 1
X5 ) Z5 1

Xy Ya Zy 1

One notices immediately that the entries of the condensed jacobian
matrix are not rational functions of the coordinates of the satellite and
station position points. Therefore one can not handle this matrix as
that of range networks. To find out the determinantal loci in this case
one may proceed as follows. First adopt a set of admissible constraints.
Since the constraints Xg,Yg,Zp = constant have already been adopted,
three more are needed. By constraining the coordinates yy,zj,zp one has
the following set of admissible constraints.

Xp,Ygs2gs¥1521,22 = constant. (106)
By leaving out from Table 12 the columns corresponding to dyj,dzy,dz) and
taking the determinant of a typical 9x9 submatrix, it is obtained by

Laplace expansion the following expression (compare with (29).

[
L]
o
(=]
o
E
(-]

320 bae 1 Jazg bzg e3y €40 !
la] = E (f1eozees |f10 1 b
- a2, : 11 a3, bs. ; 1 .
p1lnz(p3)) a); 1 j2 "z 3ig T3ig 34y 54 b4j7 “45, 1

i

az ba. 1| [az, b3 | : R
33 "2 s s 3 Mg Pajy C4j !
az. by, c3. 1 ag. bg .
ie is ie ETIRG PR T
31,32 33 34 i dg dg 3g ]
X AI 52 4z AS A3 ﬂs ﬂ‘ A43A49 (107}
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where
Jyrdgseensig
is any selection of ninc satellite-position points out of the m.-
| The determinantal loci for the satellite and station position points
are obtained from the expression (107) by equating to zero each factor of

the typical term. Thus one has the following:

{i) From
a 1 .
10 =0 : (108)
aqs 1 ‘ ' :
1]1

it is concluded that if all the satellité—position points; (Qd,Q1’°--:Qm)’
lie on the circular cone wifh vertex at Piz[xl,yl,zl) and axis parallel to
the x-axis, {ﬁhen alﬂ;algl’ {ji=i,2?...,m)), thgﬁ tﬁe determinants of all
9x9 submatrices vanish. Therefore phe pircﬁlar cone with vertex at
Plz(xl;yl,zl), axis parallel to therx-axis and ﬁassing througﬁ thé point
'QOE(XO,YO,ZO) is a determinantal locus for the satellite—poéition pdints
(Q1,Q25-++,Qy) -

{ii) From
b 11 =0 . ' (109)
2}2

it is concluded that if all the satellite-position po%nts are distributed
- on any two semi-straight lines through”PZE(xz,yz,ZZ){ (which may coincide),
then the determinanfs of all 9x9 submatrices vanish. Therefore any two
semi-straight lines through Pzz(xz,yz,zz), constitute a'determinantal
locus for the satellitefposition points QO%Ql""’Qm‘ 'Since the two semi-

straight lines‘may coincide, any single sémi—straight line through P3, is
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also a determinantal locus for the satellite-position points Qgp,Q3,...,Qp

(iii) From

azp  bzg e300 1

a3j, b3j, ©3i, 1
Ja 774 4 =0 (110)

asjs b3j5 C3j5 1

a3je b3j6 3¢ 1
it is concluded that if all the satellite-position points are distributed
on three semi-straight lines through P2=(xp,y»,z7), (any two of which or
all three may coincide) then the determinants of all 9x9 submatrices van-
ish. Therefore any three semi-straight lines through P3=(x3,y3,23) con-
stitute a determinantal locus for the satellite-position points
Q3:Q,Q2,.-.,Q,- Since any two of the three semi-straight lines or all
three may coineide, any two or any single semi-straight line through Ps,
constitutes aléo a determinantal locus for the satellite-position points
Q:Q:Q, .- 50,

(iv)} From

a40 Pao  c40 1
"3 b4j7_ "4y : =0 (111)
a4j8 b4j8 C4j8 1

a4j9 b4j9 C4j9 1
it is concluded as above that, any three semi-straight lines through
Pq=(x4,y4,24), (any two of which or all three may coincide), constitute a
determinantal locus for the satellite-position points Qg,J1,...,Qm. Since
any two of the three semi-straight lines or all three may coincide, any
two or any single semi-straight line through P4, constitutes also a deter-

minantal locus for the satellite-position points Qg,Qj,...,Qy-
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(v) From |
Y=o - e L )

it is concluded that if all the satellitehposition'points lie in the plane

(PZ’PS'p4)’ the condenéed jacobian matrix is of rank.less thah_niﬁe and

therefore the plane (P,,P3,P4) is-a determinantal locus_fof the set of all

the satellite-position points. |

_(vi) From either one of the relations

aéz = 0, A:;'g3 =0 o | S (113)
it is concluded that the plane (Py,Pz,P4) is a determinantal locus for the
set of all the satellite-position points.

(vii) From either one of the relations

ajs" =0, AJ35 =0, 4. =0 ‘ : , (114)
it is concluded that the plane (Py,P5,P3) is a determinantal locus for the
set of all the satellite-position points.

-(viii] From either one of the relations

17=0 A'LS--O Aig_o : . | | ©(115)
it is concluded that the plane (P],Py,P3) is a déterminantal,locug for the
set of all the Satellite—position points.

For the stat10n-pos1t10n points one has the following.

By con51der1ng the determinants Ai, i=1,2 3 4 one concludes that, if
any three station-position points are collinear, the last three rows in
one of these determinants are linearly dependent, and the determinant of
any 9x9 submatrix of the condensed jacobian matrix vanishes. In other
~words the straight line determined by any two station-position points is

a determinantal locus for each one of the other two separately. These are

the only determinantal loci for the station-position points independently
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from the satellite-position points. The plane determined by any three
station-position points, is not a determinantal locus for the fourth one.

2.3 The Case of More Than Four Ground Stations

When more than four stations participate in the observations, one
may consider the condensed jacobian matrix being formed from the con-
densed jacobian matrices of station-quadruples placed row wise one after
the other, in an exactly analogous way as in the case of range networks.
Then the determinantal loci for the satellite-position points result by
repeating the above quoted for each station quadruple envolved, and the
determinantal lock for the station-position points too, result in the
same way as in the case of four stations. Thus, the straight line deter-
mined by any two of the station-position points, is a determinantal locus
for each one of the others separately. In other words if any three sta-
tion—position points are collinear, the configuration is singular. To
derive the determinantal leci of any case formally, one should consider
the expression of the determinant of a typical submatrix analogous to
(107), and equate each factor of the typical term to zerc. Consider for
example the case of six stations, P;=(x;,y;,2;), (i=1,2,3,4,5,6) observ-
ing continuecusly range difference in a pattern of observation such that
three station quadruples, say 0g563(1,2,3,4), 0462(1,2,3,5) and
Q45:(1,2,3,6) carry out all the observations, Let {jcggl, {J46}, 45} be
the satellite-position point sets observed by 056, 046, 045 respectively.
Theﬁ the determinant of a typical submatrix of the condensed jacobian

matrix of this case may be written as follows.
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: 01 +09+03+O ago b2 *
4056046, 045) |= ?-, (1)01+02*05%%4a g

o, o, 1
p1(r2(p3lr4(05)))) a1 d2my  P2mg

42m3z boms3 1
X Dg4’mS’mGD?7=mS’mQD?10’m11!m120213!m14’m15

' mp m2 m3z mg m5 MG
X 814882y802e7283n083c2B3vE

x 0y Ledn8etnetnadsabsiinciEnsiiochd - - ale)
where
ml,mz,m3,m4,m5,mqa{j56}LJ{j46}LJ{j45}
my,mg’mga{j56}

y (117)
myg,myq.mpze{iael
m13,m14,m15€{j45}

‘ (56),if my,mp,m3,mq,m5,mee{igg} respectively
(aB) 4 (v8), (), (n0), (kA), (vE)= {(46),if ml,mz,m3,m4,m5,m65{j4é} jespectively
- - (45}),if ﬁl,mz,mj,m4;m5,m6s{j45}-respectively
and | |
aso  DPso €so !
n?i’mk’“ﬂ _{Pemi Psmi Csmi | (523,4,5,6) (118)

asmg  bsmg  Csmg 1

agmg Psmg  Csmg 1

The determinantal loci are obtained by searching for the zeroes of the
typical term of the summation (116).

Determinantal loci for the satellite-position points.

(i} From
a0 1
= 0, (mle{j56}tj{j46}lj{j45})
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it is concluded that the circular cone with vertex at Py=(xj,y1,21), axis
parallel to the x-axis and passing through the point 0 =(X,,Y,,2,) is a
determinantal locus for the satellite-position points {jcet U{jgetUiigsl-
{(ii) From

azgp bpo 1

am, bamp 1| = 0, (mp,mzelisetUlisetUligsh)

a2ms b2m3 1
it is concluded that any two semi-straight lines through Pr=(X3,¥2,22),
(which may coincide) constitute a determinantal locus for the satellite-
position points {jSG}L){j46}LJ{j45}. Since the two semi-straight lines
may coincide, any single semi-straight line through P,, is also a deter-
minantal locus for the satellite-position points {j56} {j46} {j45}.
(iii) From

ma,ms,m 3 ]
D327 < g, (mgsmg,mgelfget Uli gt Utiysh )

it is concluded that any three semi-straight lines through P3E(x3,y3,23),
(any two of which or all three may coincide), constitute a determinantal
locus for the satellite-position points {jgg} U{iggltUligst.

{iv} Fronm

mz,mg,mg .
Dy = 0, (my,mg,mge{jgg})

it is concluded as above that, any three semi-straight lines through
Py=(x4,¥4,24), (any two of which or all three may coincide) constitute a
determinantal locus for the satellite-position points {jgg}.

(v) From

myQ,M11,M]2 .
Dg T 0, (mygamygamygeligg))

it is concluded that, any three semi-straight lines through Psz(xs,ys,zsL
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{any two of which or all three may coincide) constitute a determinantal
locus for the satellite-position points {jsel.
(vi) From

m ;m ’m V

it is concluded that, any three semi-straight lines through Pe=(Xg,Y6s26)
(any two of which‘or all three may coincide) constitute a determinantal
locus for the satellite-position points*{j45}.
(vii) From
myelisgetUtigetUliys!
(56}, if mle{j56}
mo
Algg= 0, [(aB)=1(46), if mls{j46}
| (45), if m1€{j45}
it is concluded that, the planes (P,Ps,P,), (Py,P3,P5) and (Py,Pz,P¢)
‘constitute simultaneously a determinantal locus for the‘point-sets {igels
{ise!l and‘{j45} respectively. |
(viii) From either one of the relations
my,m3eliget U {igel Uligs?
_ (56), if my,mzeljcgl
M32g= 0, Bpo= 0, (v8), (e€) = {(46), if mp,mzelize)
7 1045}, if my,mzeli,gl
it is concluded that the planes (P;,P3,P4), (Pl,P3,P5)_and (Pi,PS,P6j con-
stitute simultaneously a determinantal locus‘for the point-sets {jggl,

{6}, and {jas} respectively.
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(ix} From either one of the relations

(56}, if m4,m5,m6e{j56}r65pectively

5

m L : Lo
4 0, ASK;(:O’ AS.\G}E:O! (ng)’ (KA] » (\)}‘-"): (46], if my 1m5,m6€{j46}respeCt1VEIy

m
B3ng™
(45), if my,mg,mge{jyglrespectively
it is concluded that the planes (P1,P;,P4), (Py,P5,Pg) and (Py,P5,Pg)
constitute simultaneously a determinantal locus for the point-sets {j56},

{146} and {j g} respectively.

{x) From either one of the relations

my mg my :
Bpse = 5 D456 = 00 Lyg6 = 0, (my,mg,mge{jge})

it is concluded that the plane Py,P,,Pz is a determinantal locus for the
point-set {jgg}.

{xi}) TFrom either one of the relations

m10 mi1 my2 .
Bg4e = 0, Agag = 0, Agzg = 0, (myg.myy.myze{iggd)

it is concluded that the plane (P},P,,P3) is a determinantal locus for the
point-set {jsq}.

{xii) From either one of the relations

mj3 mi4 mis :
8645 = 0, Bgys = 0, Bggn = 0, (myz,myg,mygeliys))

it is concluded that the plane (Py,P5,P3) is a determinantal locus for the
point set {jsg}. These are the determinantal loci for the satellite-
position points.

Determinantal loci for the station-position points

They are obtained by searching for the linear dependence of the last

three rows of the determinants AJ

Ay in the expression (116}. It seems

easier to consider these determinants back in their positions in the con-

densed jacobian matrix. That is not given in this case, for it is of the
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same form with the corresponding one for.range networks (see Table 9),
“and the foilowing correspondence holds between their entries.

(xj"xi)ﬂiuv *ﬁ(aij-aio)aguv

(Yj-yilaiuu ++(bij-bio)A%uv | (119)

(Zj‘zi)ﬂ%uv **(Cij*ciolﬂ%uv

" Then one has the following.

(i) - By considering the determinants

A{ses Ai4es A345- (for any j)},
of the first three columns (x1,y],z1-column block) of the condensed jaco-
bian matrix (refer to Table 9), one concludes that, if eéch one of the
point-triples

{P5,P3,Ps}, {P2,P3,P5}, {P2,P3,Pg}
is collinear, the first-three columns (x31,y1,z1-column block) of the con-
densed jacobiaﬁ matrix becéme zero ones. Therefore the straight line
deterﬁined by P2 and P3 is a determinantal locus for P4,P5 and Pg.

Similarly from the rest three-column blocks of the condensed jaco-

bian matrix one obtains the following.
{ii) From the x5,y2,zp-column block it is concluded that, if each one of
the point-triples

‘{PI,P3,P4}, {P{,P3,P5}, {Py,P3,Pgl}
is collinear, therxg,yg,zz—column block becomes a zero one. Therefore
the straight line determinea by Py and Pz is a determinantal locus for
P4,Pg and Pg. |
(iii) From the xz,y3,z3z-column block, it is concluded'that, if each one
of the point-triples

{P1,P2,P4}, {P1,P2,P5}, {P1,P3,P¢l
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is collinear, the x3,y¥3,z3-column block becomes a zero one. Therefore
the straight line determined by Py and P, is a determinantal locus for
Pg,Ps and Pg.
(iv} From the last three column blocks, i.e.

x4,y4,z4-coiumn block,

Xg,¥g,Zg-column block,

Xg»Ygs Zg-column block
it is concluded that, if the points Py,P;,P3 are collinear, all these
three column blocks become zero ones. Therefore the straight line deter-
mined by anf two of the three points P{,P2,Pz is a determinantal locus

for the third one.

Remark: 1In this observational pattern, it may happen that the point-
triples above have two points in common. However this is not the

case for all the observational patterns. In order to find out

the general form of a determinantal locus of this kind, one should
notice that it is associated with one of the stations and is defined
through the collinearity conditions of the point-triples which result
from the station quadruples in which the associated station participates
after excluding that station. The general procedure of finding out such
a determinantal locus is given in the following section 2.4. Recapi-
tulating the results of the above observational pattern one has the

following.

Determinantal loci for the satellite-position points

(1) Any three semi-straight lines (any two of which or all three may
colncide) through either one of the station~position points P3,P4,P5,P6

(with no coordinates constrained) constitute a determinantal locus

for the satellite-position points observed by the station-quadruples,
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in which the corresponding station participates.

(2) Any two semi-straight lines (which may coincide) through statién Py
' (whose one of the coordinates, zp, is constrained) constitute é deterﬁin—
antgl locus for the satellite-position points observed Ey the station-
quadruples, in which the statiop P2 participates.

(3) The circular cone with vertex at the station-posit{on point P1 (when
two of the coordinates, yp,%1, Aare constrained), axis parallel t0 xfaxis
and passing through the point Qo2(Xg,Yps2Zg), 15 a determinantal locus for
the satellite-position points observed by the station-quadruples, .

in which the station P1 participates. o

(4) The plane (Py,P;,P3); is a determinantal locus for each one of the
point-sets {j56},'{j46};'{j45} separately. |

(5) The planes (Pj,Pg,P4j,.(P2,P3,P5), (Pz,P3,P6):constitute simultane-
ously a determinantal locus for the point-sets {igel, {iggls {igs} respec-
tively.

(6} The pianes (P1,P3,P4), (Pl,PS,PS), (Py,P3,Pg) constitute simultanej
ously a determinéntal locus for the peint-sets {j56}, {j46}, {j45} respec-
tively. _

(7) The planes (Pl;ﬁz,P4), (P1,P2,Ps5), {P1,P2,Pg) constitute simultane-
‘ously a determinantal locus for the point-sets {igg}s {igehs {ig5} respec-

- tively.

Determinantal loci for the station-poéition points

(8) Each one of the spraight lines (Pq,P5), (P5,P3) (Py,P3) is a deter-
minantal locus for P4,Pg and Pg.-

(9) The straight line determined by any two of the three points P1,P5,P

is a determinantal locus for the third one. .
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Remark: The selected set of admissible constraints
Xo:Y0:205Y1521,22 = constant appears to affect the determinantal loci in
{(2) and (3). Thus, as in the case of range-networks, the selection of
the set of admissible constraints does affect the determinantal loci.
2.4 Synopses

After the above discussion one concludes the following about the
determinantal loci for networks of ground stations observing range dif-
ferences by means of geoceiver.

Determinantal loci for satellite-position points

(a) Any three semi-straight lines (any two of which or all three may
coincide) through a station-position point Pj=(xi,y;,%i), ( with

no coordinates constrained) constitute a determinantal locus for the
satellite-position points observed by the station-quadruples, in which
station P; participates.

In case one of the coordinates of P; is constrained, the three semi-
straight lines are reduced to two, while in the case when two of the coordinates
of Py are constrained, the determinantal locus is the surface of the cir-
cular cone with vertex at P;, and axis parallel to the coordinate axis
corresponding to the unconstrained coordinate.

(B} A second category of determinantal loci-for satellite-position points
consists of sets of planes determined by the station-position points, (see
determinantal loci (4), (5), (6), (7) at the end of the preceding section
2.3). The determinafion of a determinantal locus of this category, de-
pends upon the observational pattern; however one can give a general pro-
cedure of determining a determinantal locus of this category for any

observational pattern, without having recourse to the condensed jacobian
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matrix, (see following Remark). Fach determinantal locus of this cate-
gory is associated with a ground station. In other words there are as
many determinantal loci of this category as ground stations. Consider
any station of the network, say P;. The determinantal locus associated
with this station is determined as follows:

Let 07,09,...,0¢ be the station-quadruples in which Pi participates.
and {Qj}ls{Qj}Zv---s{Qj}k be the sets of satellite-position points ob-
served by thése station-quadruples respectively. Exéluding station- :
position point P;, the remaining three station-position points in each
one of the station-quadruples 07,02,...,0k determine a plane. Let these
planeé be denoted by my,m2,...,mg. Then the planes mp,mp,...,mg consti-
tute simultaneously a determinantal locus for the_satelliteaposition
point-séts {Qj}l’{Qj}é""’{Qj}k respectively. That is, if

(05}1em; |
- {Qy}aem;
{Qj}kswk
there is no unique least squares solution.

One may check the procedure with the observational pattern of the
preceding section 2.3. In that observational pattern the three station-
quadfuples O5¢,04¢ and 045 carry out all the observations, observing the
sets of satellite-position points {isg},{jqe} and {is5} respectively.

The deferminantal:locﬁs of the category under discussion, associated with
station P1 for example, according to the above described procedure, is
determined as foilows. The statioﬁ Pl participates in all three station-

quadruples 0g5g,04¢ and O45. By excluding Py, the remaining three station-
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position poiﬁts in each one of the station-quadruples Ogg,04¢,045 deter-
mine the planes

(P7,P3,P4), (P2,03.P5), (P2,P3,P6)
respectively. These planeé constitute simultaneously a determinantal
locus for the point-sets {isg},{j4e}. (145} respectively. This checks with
the result of the preceding section 2.3, As a second check, take the
determinantal locus associated with the station P4. This station partic-
ipates in the station-quadruple 0gg=(1,2,3,4) only. By excluding Py, the
remaining three station-position points determine the plane

(Py,P5,P3].
This plane is a determinantal locus for the satellite-position points
{jgg} observed by the station-quadruple 0gg=(1,2,3,4). This result checks
also with that of the preceding scction 1.3,
Remark: 1In case of a determinantal locus of this category, say that
associated with station P, the three columns corresponding to the coor-
dinates xj,yj,zj of Pj, of the condensed jacobian matrix become zero ones.

Determinantal loci for station-positicn points

Each of these determinantal loci is associated with a station. In
other words there are as many determinantal loci of this type as stations.
The general procedure of finding out such a determinantal locus is analo-
gous to that which was described above for the satellite-position points.
Consider any station of the network, say Pj. The determinantal locus for
station-position points associated with this station is determined as
follows.

Let 07,05,...,0; be the station-quadruples in which P; participates.

By excluding station-position point P;, there remains from cach one of
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the station-quadruples 04,0,,...,0, 2 point-triple. Let these triples

be denoted* by
1 2 .2 2 k k Jk

plplel , PI.P5.P5 . ..., PI.P3.P3 .
Let aisd
{ey), (ep), «vvs (ey)

be the straight lines determined by any two of the three points of the
above point-triples respectively. Without loss of generélity one may
take

(eD=PhPY) . (€25, P, ooy (e)Z(PL,PD)
Then the straight lines (51)-(52)""’(€k) constitute simultaneously a
determinantal locus for the station-position points Pé,P%,...,PE respect-
ively. That is, if each one of the point-triples

k k}

wl,pd,phy, p2,03,0%), ..., (P,P5,P5

is collinear, the xj,yj,zj-column blockt of the condensed jacobian matrix
becomes a zero one, énd there is no unique least squares Solution.
Remark:‘ It is concluded from felation (97} that, if one knows the n
ranges S;(i=1,2,.t.,n; n=the number of the stations), then the problem is

reduced to one of ranges.

*For a specific observational pattern these triples are completely deter-
mined. The above notation is used in order to facilitate the general
discussion for any observational pattern,

txi,yi.2zi are the coordinates of the station-position point Pj.
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APPENDIX A

Implicit Function Theorem

The implicit function theorem is stated here without proof. It is
given in the same form as in [Carathéodary, 1965], (p.10).

Let n functions-fl,fz,...,fh be given depending on the variables
Xj(j=1,2,...,n] and ta(u=l,é,...,m) and being continuous together with

all their first partial derivatives

afy, 3f§ (A1)
9Xj dtg

in the (n+m) variables (Xj,tq).
At an interior point (XE, t;) in the domain of definition of f; the
equations
° @ . -
fi(xj, ty) = 0, i=1,2,...,n _ - (A2)

are all satisfied and also, the determinant

o
afi

x|’ | . )

D =

There then exists in a certain neighborhood of the point (t;) one and only
one system of continuous functions

X3= ¢ (ty), (i=1,2,...,n), (A4)
which, first, satisfies the conditions

X{ = 03 (t3), (=1,2,...,m) - (A5)
_ and second, satisfies identically fhe relations
fi(¢i(ta){t6).? 0, (i:j=1,2,...n; , =1,2,...,m). ‘ . (A6)
The first derivatives 3¢;/3t  exist in the séme region, are continu-

ous functions of t, and are found by solving the system of equations
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afi 3¢j + 3fi - p, (i=1,2,...,n). (A7)
aXj dta  dto

As an examplc consider the functions of the left-hand sides of (1), for

i=1,2,3.

£1(X5,Y5,24,x1,71521) = [(5-x1) 2+ (5-y1) 2+ (25-21) )

£2(X5,Y5,25,%X2,¥2,2%)) [(Xj-x2)2+(Yj-y2)2+(Zj—z2)2] (AS)

£3(X5,Y5,25,%X3,¥3,23) [(Xj-X3)2+(Yj-Y3)2+(Zj'Z3)2]
The correspondence in notation between this example and the statement of

the theorem above is as follows,

Xis Y55 Z3, X1» Y1, 215 X25 Y25 Z25 X35 Y35 23

Xl, Xz, X3’ tl’ tz, t3, t4’ t5, t6’ t7, t8, tg.
The above functions are continuous with continuous first derivatives; in

fact they are analytic. Let PE(XE,Y%,Z%,xi,yi,zi,xﬁ,y%,z%,x%,y%,z%) be a

point which annuls f;,f,, and f3, i.e.,

fl(X?sYﬁrzﬁaxi?Yi:zi) =0

0 (A9)

fz(x?)YE’ZESXESYEJZE)

fs(X?,Y? A x%,y%,z%) =0

NN B
and suppose that

X3-x] Y§5-y] Z3-z1

j
D= |2l - g fx2xg y3-ys z3-23] #0 (A10)
= 5};‘ ; j7X2 Yit¥Y2 42 .
X;-xg Yi-v% 23—23

Then according to the above theorem in a certain neighborhood of the point
(xi,yi,zi,x%,y%,z%,x%,y%,z%) there exists one and only one system of con-

tinuous functions:
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-
!

= ¢1(xl’yl?ZI’XZ’YZ’ZZ’XS’YS’ZSJ

-
1

j = ¢2(x1) lrzl,x21Y2322:x3:Y3s23)
2y = ¢3(X1,Yl,31,x2,Y2,32,X3,Y3,Z3]
which satisfy identically the relations

f1(¢1,¢2,¢3,X1,Y1,31) f 0
0

il

f2(¢1,¢2,¢3,X2,Y2,22]
f3(¢1,¢2,¢3,X3,Y3,23) =0

In other words one may solve the system (1).
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APPENDIX B

The Intersection of Three Spher%cal Surfaces

It is known that two spherical surfaqes intersect in a circle,
the plane of which is perpendicular to the line connecting the center
of the spheres. Also, the intersection of a plane and a sphere is
a circle with its center at the foot poinf of the perpendicular
from the center of the sphefe to the plane. The procedure to be followed
is to consider Ehe plane of the intersection of two of the three séheres,
the intersection of that plane with the third sphere, and then on |

that plane the intersection of the two resulted circles. The points

Section of the three spheres with the plane of the centers Pl’PZ’PB'

Fipure Bl.
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intersection (if they exist) of these two circles are the points of inter-
section of the three spherical surfaces. Since two circles intersect at
most at two points (real}, the set of intersection points of three spheri-
cal surfaces contains at most two points which in fact, are symmetric with
respect to the plane of the centers of the three spheres. To formulate
the above ideas analytically, let (C;), (Cp), (Cz) [see Figure Bl] be the
three spheres with centers the ground-station points P, ,P,,P; respective-

ly. Consider the intersection of (Cy) and (Cjy) and let Cy,(A,pP;5) be the

circle of intersection, (A its center and py, its radius)} and n the plane of

that circle. Let also Cz,(B,p3,) be the circle of intersection of the plane

n and the sphere (CS)' For convenience a table of the notations follows.

Ci(Pi,rij), (i=1,2,3) - Sphere (C;) with center P; and
radius rys.
]
Ci2(A,p72) ‘ - Circle of intersection of the spheres

(C,) and (C,) with center at A and
radius equa% to Py,

1 - Plane of intersection of the spheres
{Cy) and (C5).

Cz. (B,ps,) - Circle of intersection of the plane
m and the circle (C3).

Py,T,,T3,Ty, Ty - Position vectors of tbe points
Py,P>,Pz,A, B respectively.

The analytic expressions of the spherical surfaces are
2

€ 1 HIXIP - 2R |71 1P = nd, (B1),
€)= [IX]]1% - 25y %ellt,] |12 = 13, (B1),
(€ = [IX]|? - 2r5-%e][75]]2 = 53, (B1)3

where vector notation is used for convenience.
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Notice that
_ ] ) rF " _ rr .
X = (le’z) ] ri_(xi)Yi:zi) H 1"11213;
|1X] |3= (x2+y?e2?y, ||fi||2= (x%+y§+z%), i=1,2,3 (B2)
and r;+X = (xix+yiy+ziz)
The analytic expression of the plane = (intersection of the spheres (Cp)

and (Cy}) results by subtracting (B1), from (Bl),, i.e.;

wo 20,FX = ([Fo11%rd - dIE Py (B3)
or ‘

S | (B4)
where

= 2(Fp-F), (85)

p = (1511213 - (g [1Prfp. (86)

In order to find out the position vectors of thé centers.and the radii of
the circles C12(A,p12) and CSn(B'DBn)’ one considers the intersection of
theAplane n with (C3) and (Cl) {or C5) respectively. Since BP3//P1P2 one
may write for fhe eqﬁation of the line BPz, (see Figure B1}.

BP3=£7 : X=i3+i(fg-fl)=i3+kf, (A= a scalar).‘ (B7)
By considering B as the intersection of m and BPzzf,, its position vector

‘results from (B4 and (B7), namely

X-t=p rp*t = p Par5:t ||BP3]|
RTarAE§ . Ty=Totdpt B THIEIE 5
X=rz g=T3*Ap
and
. P-r3+t__ o
j|:'B=]:'3 +[.-.._—]t [Bg)
E
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For the radius pz, one observes (see Figure Bl) that

2 2
0% = 35~ 118035117,
and by (B8)

P-T1-t
2 2 Sttty

Analogously for the circle C1z(A’012) one cobtains

SR Lt MY, (B11)
rA=r1 +|——T,
[1e]12
P-T,+t
2 P 1 2
pl2=rij "[ ||t|!] (12)

by considering the intersection of m with (C;), or the equivalent
P—fz-f

2 e, (B13)
|e] |2

rpA=Ty + [

2 _ 7 p—]-!'z'f 2

pIZ—ij - —TTETT s (Bl4)

by considering the‘intersection of m with(Cy). This is all that is needed
for the conditions of intersection of the three spherical surfaces. Ob-
viously the common points to the three spherical surfaces are the common
points to the two circles, ClZ(A’plz) and CS“(B,p3“) both of which lie on
the plane n. The conditions for two circles in a plane to intersect are
well known, i.e., the distance of the centers is greater than the abso-
lute value of the difference of the radii and less than the sum of the

radii. Thus the required conditions are

lp12-p3nl < [1Fa-Tgll < p1z*ogy- (B15)
For r,-Ty one obtains from (B9}, (B11), and (B5S)
(fl—f3]'(f2—fl)

[1£2-51 112

Ep-Tp= (F)-Tz)-2 (ry-14) (B16)
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or from (B9), (B13), and (B5)} the equivalent expression

N ¢ 7 r LA i S L .
Fr-Tp = (Fp-T3) - FrT9) T g 5y (BL7)

For (pyp-p3,) and (py2*e3y) one uses the formulas (B12), (B10) or (B13),
(B10). It 1is understood fhét one may consider first, instead of the
intersection.of the spheres (Cy) and (C,) that of the spheres (C5) and
(Cz) or (C3) and (Clj. .Oné observes also that the intersection of the
three spheres in pairs is a necessary condition but not sufficient. That

is, the conditions

lrz-ro5l < [Ea-Ty [ < Crpytray) (B18);
|r3j—r2j| < ||f3—f2[[ < (r2j+r3j] (B18)»
|rs5-r150 < [lEs F1ll < (r340r13) (B18)3

are necessary for (B15) but not sufficient. After the conditions for the
intersection, one may proceed to find the degenerate cases.

‘ The left-hand side of (3) is the determinant of the matrix whose
roﬁs are the vectors (fj—il], (fj—fz), (fj—fs). Thus condition (3) may
be interpreted as the condition for the vectors (fj—flj, (fj—fz), (fj~f3)
to be linearly independent, or equivalently not tﬁ be coplanar. This is
equivalent to saying that the four peints Qj,Pl,Pz,PS are not coplanar.
Since Qj, as it ﬁas said above, does not lie in the plane of the centers
Py,P2,P3, the only case for the points Qj,Pl,Pz,P3 to be coplanar is when
Py ,Py,P3 are collinear, Thus t3] is equivalent to stating that the_cen-
ters of the three spheres are not collinear. 1In the case where the centers are

collinear, the three spherical surfaces which have one point in common,

have in common the circumference of the circle through that point whose
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plane is perpendicular to the line of the centers, and the center lies on
that line. Thus under conditions (3) and (B15) the set of points which
annul the system (2) contains two points symmetric with respect to the

plane of the points Py,P,,Ps.
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APPENDIX C

The Invariance of the Rank of the Jacobian Matrix

The invariance of the rank of the jacobian matrix is equivalent to
the invariance of the jacobian determinant. To see that, consider a jaco-
bian matrix of rank u; that means that'there exists at least one uxuy sub-
matrix whose detérminant is non-zero: but that determinant is the jacobian
determinant of the corresponding functions; therefore the rank of the
jacobian matrix is invariant under some transformations if and only if
the jacobian determinant is invariant under those transformations.

Cdnsider the set of equations
Yy = fl(xl,...,xn) N
Yo © fn(xl,...,xn).
which may be looked upon either as a transformation of coordinates or as
a transformation bf the points of the vector space Vp of coordinates xj
émong themselves. Let (x},...,xp) be a point which corresponds to
(Qi,yg,...,y;). Then in the neighborhood of (x%,...,xp), consider the
differential space B, which is spanned by the differentials dxy,...,dxy,
and in the neighborhood of (yj,...,yp) the differential space By which is
spanned by dyy,...,dyy. The jacobian matrix is the matrix of the linear

transformation under which the differential space Bx goes into the dif-

ferential space By, i.e.,

_éfl Bfl- - 1
dy] PRI P dxy
] axl 3Xp )
= e e . . (C2)
dyn 3fn, ..., 20} Jax,
E}fl Bfn T
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or

dy = Jy-dx. (C3)
Suppose that dxy, dx,,...,dxp are independent from each other, that is
they constitute a basis for the differential space By, and this is the
case for dyj,...,dyn in By.

Consider the affine transformation

Z = Ax+B, |A|#0, (C4)

where A is a constant nxn matrix, B is a constant n-vector, x=(x1,...,xn)T
and z=(zl,...,zn)T the vector onto which X goes under the transformation

{C4). Then the jacobian matrix Jy in (C3) is transformed as follows:

afi n Bfi ¥AN _ I 3fi

9xj "k dzk 3Xj “k&1 azx ki (€5)

where akj is the (k,j) element of the matrix A. Then one may write in

matrix notation
Iy(x) = Iy(2)A. (C6)
By taking the determinants of both sides one has

e[ = [u (Al = [A] Loy ] (€7

Hence !JM(x]| is a relative invariant of weight* one, under the transfor-
mation (C4). Differentiation of (C4} yields

dz = Adx or dx = A ldz, (C8)
and then substitution of (C6) and (C8) into (C3)

dy = Jy(x)dx = Jy(2)A A ldz = Jy(z)dz. (C9)

The last result shows that Jy{x)dx is an invariant, under the transforma-

tion (C4).

*It is recalled that the weight is rendered by the exponent of the deter-
minant of the matrix of the linear operator. If the exponent is zero
then one has an absolute invariant, otherwise a relative one.
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Since the jacobian determinant is invariant under the affine trans-
formations, the rank of the jacobian matrix is invariant also, under the

same transformations.
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PRECTDING PAGE BLANK NOT FILMED

APPENDIX D

Pivotal Condensation ({5], pp. 45-48)

By condensation of a determinant it is meant the reduction of its

order in a systematic way. There are various methods of condensation,

from which the method of pivotal condensation is presented here. Since

pivotal condensation corresponds exactly to the process of successive

elimination which is used in the solution of simultaneous linear equa-

tions, it seems to be easier to introduce the method from that side.

Consider for example the following set of simultaneous equations:

a1x1+blx2+clx3+dlx4 hy

azx1+b2x2+c2x3+d2x4 = h2

azx)+bgxp+eaxz+rdzxy = hy

H

a4x1+b4x2+c4x3+d4X4 hy

3

(1)

and try to eliminate the variable x;. To do that one may proceed as

follows : by multiplying all the equations except the first by a; and then

performing the operations

eqt. - a2(1St eqt)
3£ eqt. —-ajJSt eqt)

40 eqr. - a405t eqt)
to obtéin |

apxy + byxg+ C1X3+ dix4
0 (albz—blaz]X2+(a1C2—Claz)X3+(aldz—dlaz)X4

+

+

Q (albs—blas)x2+(alc3—clas)x3+(alds-dlaij4

0

+

;EfrP,réEéding page blank | -1n-

t

(arby-byag)xy+(a cy-cyay)xg+(agdy-dia )xy =

hj‘
hy-ashy

h--a.h (D2)



Now consider the determinant of the coefficient matrix, and observe the
above operations for the elimination of x;, on that determinant.,
a; by ¢y dy

adn by Co d')

[A] = |ajbyegdy] = ) i ) |, e, (D3)
az bz c¢3 dj

ay by g dy

ay b1 1 dj aj b1 ¢ d1
3|A] aja, ayb, ajc, apd ) 0 lajbs|  lajes|  lagds|
o1 i ajaz apby ajc3 ajdsg o laybg|  lajez|  |ajds|
ajaq ayby ajcy ajdy 0 |alb4| I31C4| |ald4|
laby | [ajea]  |ajdal
|Af = ig- lagbz]  lajez|  Jaids] | (D4)
" llambal lageal  layagl].

Thus the original determinant |A| has been reduced to one of third order.
In general a determinanf of order n is equal to 1/311]_2 times a determin-
ant of order n-1, the elements of which are the minors of |A| of order 2
having aj as leading element placed in proper priority of rows and col-
umns. Thus the minor belonging to the 15% and (i+1)th TOWS, 15t and
(j*+1)3% columns of |A| will be the (i,j)t" clement of the condensed deter-

minant. The element aj is called pivotal element or pivot. The pivot

need not be the leading element, which may be zero. Any convenient non-

zero element may be taken as pivot, for one could make any element a

*The representation of a determinant as a row of its diagonal elements is
very convenient, in this sort of manipulations, and it is adopted in the
present appendix.
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leading element by permuting rows and columns. The pivots which are lead-
ing elements are more convenient. Next to the leading pivots in conven-
ience come the diagonal elements.

Not only singie clements may be usgd as pivots, but any non-zero
minor. Principal minors are preferable. The procedure is the same as
that of a single element pivot. Thus a determinant |A] of order n which
is to be condensed by using as pivot a principal minor of order m (m<n),
is equal to (Amj(u"mEIJ times a determinant of order (n-m) the elements
of which are the minors of |A| of order (m+l) having Ay as leading prin-
cipal minor, placed in proper priority of rows and columns.

Before closing this appendix, a series of important identities are

given.
| 1 |la11a22]  [a11223]
ajjagpazzl = a1) (D5)
layjaza|  Jaypassl
| lanagat  lappagsl lagyagl
-1
layjassazgaqs ] = aip [laniasa|  lapjassl  lapgasal) (06)
|311342| |311343I |311344|
| , [lfnazzassl laniezaasal)
laj1a27333844] = lagiagy! (D7)
|311322343| |311322344|
_, |la112222338a8]  la11220833044]
laj1a22333244255] = lajiazzass| (D8)
layjazz833a54]  lajiazzassass
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211+~ *mmAme 1, me1 | |a”...a.mma.m,1’m,2[. .- [a”...amam’l'n|

|a a|=|a a_ [~ (r-m-1) la”"‘a'“"'a"‘*z:'"*ll Iall“'amam+2.m+2|"'Iall"'amamz,n[
11 nn 11 mle s e e e w e e e e s s . . (D9)
]‘11---aman,m+1l |ﬂ11---ﬂmnﬂ-n,m2f ...|au...aman’nl
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APPENDIX I

Condensation of the Jacobian Matrix

For Four Stations in Range Networks

i) Pivotal Condensation

Let Pyz(x1,¥1,21) PZE{XZfYZ’ZZ)’ Pz=(x3,Y3,23), P4E(x4,y4,z4] be
foUr simultaneously observing ground stations, and sz(xj,Yj,Zj),
(j=1,2,...,m) be a set of satellite-position points observed by those
stations. Then the fﬁnctional rclationships on which the étatistical

model is based, arc

2 2 2
flJE(X]-Xl] +(YJ -)-’1) +(ZJ-21-] = T%J
i=1,2,3,4 (E1)
j=1,2,...,mmz0

{see Sections 1.2 and 1.3).

Thisrsystem contains

v = 4m>24 equations, i ‘ (E2)
and

3m+3x4 = 3(m+4) unknowns, ‘ (E3)
among which six are to be constrained, so‘that there are

| u'=‘3(m+2f actual unknowns. ‘ (E4)

Nevertheless while fbrming the jacobian matrix, (Jy) for the system (E1),
ﬁo unknown variable is considered constrained. Thus the jacobian matrix
of the system (E1)} is of dimensions Amx(3m+4). Since (El1) is cyclicly

symmetric with respeCt to Xj,Yj,Z- and Xi,¥;,Zq, while writing the explic-

J

it form of the jacobian matrix only the columns for Xj and x; will be
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written down for simplicity. The columns for Yij and ¥i%; will be

understood to follow immediately those of Xj and x; respectively.

Thus, one has for the jacobian matrix:

(i,i) X1 Xj X 3] x3 x3 x4
(1, D] 2(%y-x;)| 0... 0 0 [-2(%-xy)| © 0 0
1,3 0 |...02(X5-x1){0... 0 ji-2(%5-x1) 0 0 0
Q,m 0 0 0|2(xg=xp) | -2(X,-xy) 0 0 0
(2,1} 2(X1-x2)| 0... a 0 0 -2(X1-x2) 0 0
(2,3) 0 .. 0 Z(Xj —xz) 0... 0 0 -Z(Xj-xz) 0 0

-

(2,m) 0 0 0|2 (Xy-x7) 0 -2 (Xp-x2) 0 0
(3, 1) 2(X;-x3} 0. .. 0 0 0 0 -2(Xy -x3) 0
(3,j) Q .0 2(Xj—x3) 0 0 0 0 -2(Xj-X3) 0

{3, m} 0 . a ..0 Z(Xm-){3] 0 0 -2(Xj-x$} (1}
(4, 1)) 2(X1-x4) 0... 0 0 0 0 0 |-2(X1-x4)
{4,3) o ...0 Z(Xj-x4) 4] 0 0 0 0 -2(Xj-)€4)
(4,m 0 0 S0i20X-xg)] 0 0 0 |-2(%g-x4)

Table El. The Jacobian Matrix for the Case of Four Stations
Note : Only the x-columns appear for brevity.
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According to what was said in Section 1.3, the least squares solu-

tion is unique iff

1l

rank Jy = u = 3(m+2) . (L5)
while for

3(m+2)

il

rank Jy < u
one has the determinantal loci of the configuration. Therefore in order
to find out the determinantal loci, one has to consider the -determinants
of all uxy submatrices of Jy, where the value of y = 3(m+2) is determined
through the value of m, which is given from the equation.

m = 3(m+2), i.e., m=6 . (E6)
Thus |

U= 3{(me2) = 24 . (E7)
It is reminded that m=6 is thc minimum number of events for a unique sol-
ution in the case of four stations, (see Section l,l.s.félations [6]). |

At this point oné is compelled to constrain six of the -unknown vari-
ablés, in order to be able to pick up a 24x24 submatrix. However it is
desirable to arrive at gencral exprcssions, before one spccifies the
coordinates to be constrained. In the following the method of pivotal
condensation will be uéed to simplify the determinants of those pxu=24x24
submatrices. Working out that method with a specific set of admissible
constraints a reéult'will be obtained the symmetry of whicﬁ will lead to a
géneral expression.

Assume that xl;yl,zl,yz,zz,zs are constrained and consider, without
loss of generality, the submatrix of the u(=24) first rows of the jacobian
matrix. In order to get this submatrix, put m=6 and ignore columns xj,y1,
zi,yzfzz,zs in Table 1. of the jacobian matrix. Thus the following

determinant results, where the factor 2 has beén dropped from each entry:
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14 |7 10 13 16 : 19 20 22
X X2 | X3 X4 A5 X6 X2 X3 X4
1pg-x10 0 | o0 0 0 0 0 0 0
2] 0 iXp-xy| O 0 0 0 0 0 0
3] 0 | 0o |Xz-x3| © 0 0 0 0 0
al o o0 | 0 |Xexq 0 0 0 o | o
5| o 0 0 0 X5-X1 0 0 "0 0
6| o | o | o 0 0 Xg-X1 0 0 0
7[Xy-xp| O 0 0 0 0 ~{X1-x3) 0 0
B| 0 ([Xp-x2 ¢ [ 0 0 -{X2-x2) 0 0
9| 0 | 0 |xgxp| O 0 0 - (X3-x7) 0 0
1wl o | 0o | 0 |X4x; 0 0 - {X4-%3) 0 0
1l o | o i o 0 Xg-X3 0 - (Xg-x3) 0 0
2 0 |0 Lo | o] o | xexf -Gexp| 0 | 0
13]X;-x3] 0 | o 0 0 0 0 |-(Xy-x3)| o0
14| 0 |X;-x5| O 0 0 0 0 [-Mg-xg)| ©
15| 0 | 0 |[Xg-xz| O 0 0 0 |-(X3-xg)| O
16y 0 | 0 | 0 |Xg-x3 0 0 0 |-(x4-x3)] O
170 o | a | o 0 Xg-x3 0 0 |-(Xg-xz)| ©
18] o | o 0 0 0 Xg-x3 0 ~(Xg-x3)| 0
19|X1-x4] © 0 0 0 0 0 0 |-(X1-x4)
20| 0 |Xp-x4| © 0 0 o | o 0 |-Cipxa)
21 0 | 0 iXzg-xg| O 0 0 o 0 -(Xz-xq)
22l 0 | 0 | 0 |X4x4 0 0 0 0 |-(X4-x4)
230 0 | o | o 0 Xg-xg 0 0 0 |-(X5-x4)
24 0 | o ] o 0 0 Xg-%4 0 0 |-(Xg-xq)
Table E2. Determinant of a 24x24 Submatrix of the

Jacobian Matrix, (see Table E1).
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This determinant should be expanded and its zeroes be searched for the
determinantal loci. ‘Thcre are many methods of expanding a determinant,
the most appropriate one here being that of pivotal condensation, (see
Appendix D).

Take the principal minor of the first eighteen rows as the leading

pivot (assumed non¥zero) and let it be called |318[‘ Also interpret the

symbol.
|A189(D ’A)l
as the principal minor which results by juxtaposing the pth_row and

Ath_column with the principal minor |Ayg|. Then one has for the above

determinant |Ar:

{a1g. (19,19}, (818, (18,200, layg, (19,213, la;q.(19,223], |844.0(59,231], a1, (19,20)
|875:120.19) |, |a;g,020,20) (. |2y4,(20,21), [814.€20,22)] , [8)5.(20.23)], |8,5.(20,28) |
1 e 2119, 1818.21.200 ], lagg,(21,213], [ayg, (20,22) |, |4y, €20,23)], |a1g,(21,24) |

l8]= T—A—T

. E8
181 (1018, (22,19, “|ayg, (22,200, a5, 22,01, |ng5, G221, la18, (22,23)], 1a,8,(22,24)] =

818,023,1901, 1814, (23,20}, |8)g. (23,200 |8, (23,22)], |8y, (23,23)|, |8y, (23,24)]

|a15. (24,190}, [815,(24,20), layq,(24,21)], l8y5.024,22)], |15, (24,23)|, [a;g, (24,24)]
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This is a compound determinant (i.e., a determinant having determinant

elements). For its explicit form the determinant elements are

expanded by Laplacian expansion:

(a) Laplacian expansion of [4g].

Expanding IAlSI according to its first three columns there is only
one non-zero 3x3-minor which being multiplied by its cofactor gives the
only term of the expansion. The same is repeated with the cofactor and

the process continues similarly, until one obtains:

6
1.2 .3 4 .5 .6
la1g] = (-1)%84-a4-03-84-03-88 = -.I

; AL, (ES)

1

where
o=5(1+42+3)+ (1+7+13)+ (1+6+11 )+ (1+5+9)+ (1+4+7)+ (1+3+5) = 105

and

X Y.

i Y5

]
Xj-xy  y3-¥1  Zj-71

j Xl yl Zl 1

A4 = Xj—XZ Yj~Y2 Zj—Zz = (ElO)
X9 ¥ Zy 1

Xj—X3 Yj—ys Zj—2.3

X3 V3 z3 1} .
It is appropriate at this place to introduce the determinant
X'-Xl Yj-yl Zj—Zl 1
Xj-X2 Yj—yz Zj-ZZ 1

8l = | (E11)
Xj—X3 Yj—Y3 Zj-Z3 1

Xj -X4 Yj -y4 Zj-—24 1] .
After some row and column manipulations 4 becomes
X1 y1 zp 1
X2 ¥z 22 1

ol = - (E12)
X3 Y3 23 1

X4 Y4 24 11 .
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Notice that al is independent of the satellite coordinates. [Lxpanding
Al according to the clements of the last column one has
S S AN S Y I (L13)

whore

X2 yZ 22 1
XS YS 23 1

X4 Y4 24 1

X'—Xl Yi—yl Z'—Zl

- ' (E14)

Xj-X4‘ Yj—Y4 Zj—24

1
and Ag is given by (EL0).

(b) Laplacian expansion of a determinant-element of |A|; say |A18,(19,19]l

Expanding this determinant according to the last column, only cne
term is non-zero, namely that which corresponds to -{Xj-x7). The other
five terms are obviously zero. To see that, take the minor of - (X5-x3},
and try to obtain its Laplacian expansion according to the columns 4,5,6;
it is zero, for there is not any non-zero 3x3-minor there. The minor of

-(X)-x5) is of the same form with |A18|. -As a matter of fact, it results
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from |A18| within sign by deleting the 7-th row and introducing the 19-th
one; in this case the sign changes for the 19-th row get the place of

the 7-th row by 11 row-interchanges. Therefore working as before one ob-

tains:
1 2 3 4 .5 6
|a1g, (19,19) {= - (X1-x2)Az° 84 by 0q" 870y (E15)
or 1 1
A3 6 Ap
|8y, (19,19) |= - (X;-x5) ET-jglﬂi = +(x1-x2)_ET la1ql- (E16)
4 4

In an exactly similar way one obtains the expansions of all the de-
terminant-elements of |A|. Dividing each row of the determinant |4| by

|318|, and taking out of each row j the common factor I/ﬂi one has
1 1 1 1 1 1
-(X1-x9)85, (Xy-x3)b3, (Yq-¥3)A3, -(Xy-x4)84, -(Yy-y4)hy, -(Z1-24)4y
2 2 2 2 2 2
-(X2-x2)42, (X2-x3)d3, (Yz-y3)d3z, -(X3-x4)Aq, -(Y2-v4)b4, ~(Z2-24)04
3 3 3 3 3 3
-(X3-Xp) 87, (X3-Xxz}d83, (Yz-y3}hz, -{X3-X4)84, -(Y3-y4)4,, -(Z3-2,4)0,
|a] = (E17)

4 4 4 4 4 4
-(Xg4-x2) a2, (Xg-x3)23, (Yq-yY3)d3, -(Xg-x4)A4, -(Yg-v4)Aa, -(Z4-24)44

5 5 5 5 5 5
-(Xg-x3)4p, (Xg-x3)83, (Y5-y3z)Az, -(X5-X4)}A3, ~(Y5-yalda, -(2g-24)44

6 6 6 6 6 6
-(Xg-x2)A0, (Xg-x3)43, (Yg-¥z)dz, -(Xg=Xgq)Ag, -(Yg-vg)hg, -(Zg-24)44
The symmetry of the above expression suggests the general form one

is looking for, where the constrained coordinates are not specified. That

general expression is given below, and it is a sort of condensed jacobian

matrix. Each time a set of admissible constraints is selected, one has

to delete the corresponding columns from the general array which follows.
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) " 2 2| n | n ﬂ é;m'{""&s [ SO Y " | =a—1
. |
| |

e
l'

- * + - - | * . - - -

\
(Ry-xpo] (0y-y 18] |(24-2)8] (xj-x2)a§|(vj-y2)ag (24200}

(“3*‘3}°§;(YJ'¥3)5%

(22963 (%;-x)4] tvj-r.oai[w,—-zmi

I
J

23

Table E3. The Condensed Jacohian Matrix for the Case of Four Ground Stations

For example the expression {E17) of the determinant |a| is obtained
immediately from the condensed jacobian matrix by deleting thé columﬁs of
the constrained coordinates xj,y1,Z],¥2,23,23 and.selecting for the index
j the values 1,2,3,4,5,6 out of the m,

1i) 'By the method of elimination

It was said in Appendix D that pivotal condensation corresponds
exactly to the process of successive elimination which is used in the
solution of simultaneous equations. This fact will be exploited to obtain
the condensed jacobian matrix by using a technique different from the pre-

vious one. Consider the differential form of the equations (El).
2(Xj—xi)(dxj-dxi]+2(Yj'YiJ(de‘in]+2(Zj‘Zi)(dzj‘dzi] = 2rjjdrij. (E18)

This is a linear mapping of the differential space spanned by the differ-
entials (de,de,de,dxi,dyi,dzi] into the differential space spanned by
drij, (i=1,2,3,4 and j=1,2,...,m). Since one is interested here in the

rank of the matrix of the above linear operator, he may consider the ker-

nel or null space of that operator, i.e., he may take
(Xj-x1) (X -dxj )+ (Y5-y3) (dYj-dyj)+(Z5-21) (dZj-dz§) = O, (E19)

to obtain all the information about the rank.
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One may group the 4m equations (E19) in m groups of four, of the

form
(Xj—xl)(de—dx1)+(Yj-y1)(de—dy1)+(Zj—zlj(dzj—dzl) =0
[Xj-xz)(dxj-dx2)+(Yj-y2)(de—dy2]+(Zj—zzj(de-dzz) =0 (5209
(Xj-x3) (dXj -dx3)+ (¥Y;-y3) (d¥-dy3)+ (Z5-23) (dZ5-dz3) = O
(X5-x4) (dXj-dxg)+ (¥5-y4) (dY;-dys)+(Z5-24) (d24-dzg) = 0.

From the above four simultaneous linear homogeneous equations one may
eliminate the three differentials dxj,de,de. The resultant of the elim-

ination is a linear homogenous equation of the form
aldx1+a2dy1+a3dz1+a4dx2+a5dy2+a6dzz+a7de+ade3+agd23+alodX4+a11dy4+312d24=0,

where the coefficients ay,(i=1,...,12) are the entries of the j-th row of
the condensed jacobian matrix as it is given in Table E3. The elimination
of de,de,de is carried out formally; one takes three of the equations
(E20), solves them for de,de,de and then substitutes in the fourth one to

obtain the resultant equation.

This method is followed in (Blaha [ 1971]) and (Rinner [1966 ) with
the difference that the constrained coordinates are specified from the
beginning, and (E20} becomes

deXj + deYj * Zdej = 0

(Xj—Xz)(de—dX2) * deYj + Zdej = {}

(E21)
(Xj-XS)(de-dXS) + (Yj—YB)(de-dyS) + Zdej =0

under the constraints xjy=y|=z)=yp=zp=2z3=0.

One observes that symmetry is gone in (E21), and that fact has many

consequences for the whole treatment. It is not advisable for a

~144-



theoretical treatment to destroy symmetry of expressions, for such an act

deprives one of flexibility in the manipulations.

The expressions (El4) for the particular set of constraints:

X1=Y 17217V T %78,

n

%2
ZJ X3
Xa
X3
Z3 .
Xy

=0, become :

0 1 XJ Yj 1
vz M -Zgqx2 vz 1
Ya 1 Xz Y3 1
¥g X Y-
+ 2y ) !
Y4 X3 Y3 (E22)

Zj Xo¥a - z4x2yj

Zj X2Y3'

-145-



PRECEDING PAGE BLANK NOT FILMED

APPENDIX F

The Complete Tnvariant System Associated

With a Set of Geometric Points

The purpose of this appendix is to quote some applications of the
theory of invariants to geometry, which are of interest in this work.
The discussion is within the frame of affine geometry. At first the def-
initions of fundamental invariants will be given.

(i) One Dimensional Space

Consider two points Pj and Pp with affine coordinates (x1,1) and
(x2,1) respectively. Take the determinant

Xl 1

812 = = X}-X2. (F1)

X2 1
This two-rowed determinant which is formed from the coordinates of the
two points is a fundamental invariant in one-dimensional space. Actually
Ajp is an cxpressibn of the distance between the two points.

(ii) Two Dimensional Space

Consider three points Py,P;,Pz with affine coordinates (xy,y3,1),
(xz,yz,lj, (x3,y3,1) respectively. The three-rowed determinant which 1is

formed from these coordinates, i.e

rr

A2z = |x2 Y2 1y (F2)

its a fundamental invariant in two dimensional space., It is well known

that A1z is twice the arca of the triangle (P1P,Pz).
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(iii) Three Dimensional Space

Consider four points P,P,,P4,P, with affine coordinates (x1 yl,zl,lL
(x2,¥9,22,1) (xs,y3,23,1), (x4,y4,z4,1) respectively. The four-rowed
determinant which is formed from these coordinates, i.e.,

X Y1 Zq 1
X5 Y2 Z9 1

A1234 = ) (F3)
X3 y3 23 1

Xq Yq 24 1
is a fundamental invariant in three dimensional space. It is known that
A1234 is six times the volume of the tetrahedron (PyP;PzP4).
The theory of invariants proves:
i) Given a finite number of points on a straight line,
[Plz(xl,l),...Pn(xn,l)], the complete invariant system aséociated with
these points is the totality of the two-rowed determinants.
X 1 i=1,2,...,n

Bjj = (F4)
X 1 j=1,2,...,n.
That means that any invariant associated with these points can be ex-
pressed as a polynomial in the 4jj.
11) Given a finite set of points in a plane
[(Py=(x1,¥1,1), .-, Py = (X 4¥y» 1], the complete invariant system associated

with these points is the totality of the three-rowed determinants.

X5 Y3 1 i=1,2, s
Aijk = xj yj 1 j=1,2,...,n (F5) |
Xk yk 1 k=1,2,...,n,

iii) Given a finite set of points in the three dimensional space

plf(xl :Yl ,21,1], 2.0y Pnf(xns)fn,zngl] 3
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the complete invariant system associated with these points is the total

ity of the four-rowed determinants

X.i yl Zi l i=1,2,. .. ,n

Xj yj Zj I ]=],2,...,1’l .

Bijke = , (F6)
Xy Yk 2k 1 k=1,2,...,n
X, vy Zg 1 r=1,2,...,n.

All these fundamental invariants are relative invariants of weight one
under affine transformations. Consider for example the determinant (F3)

and the affine transformation

x! a;p 812 a3 Ay | | X x|
y' | | 221 ®22 223 %24 YL )
z! azl a3z a33 234 2| 2
1 ag] 42 343 %44 1 Ll
Then once has
S S TS TS TS T
1 t T
NI SN E A S L RS B T N
1234 . ' D ,
X3 ¥z I3 Xz ¥z I3
1
xg vy oz 1 Xg o Yqoo gl
or
81234 = A} b1234- | (F8)

The last relation shows that Aj,z4 is a relative invariant of weight one.
In the problem of determinantal loci one has a finite set of points
in the three dimensional space, namely n étation-position points and m
satellite-bosition points. Therefore any invariant under affine trans-
formations, which is a rational integral function of the coordinates of

these points, must be expressible as a polynomial in the fundamental
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invariants (F6). As an example of this take the jacobian matrix for the

range observations from four ground stations. (see Table E3, Appendix E).

It has been proved in Appendix C that the detcrminants of its square sub-

matrices are invariant under affine transformations. Take a square sub-

matrix of that matrix, say that of the first twelve rows. That is a

rational integral function of the coordinates and invariant under affine

transformations. Therefore it must be expressible as a polynomial in the

fundamental invariants (F6). This polynomial can be obtained in

three embedded steps of Laplace expansion:

1st step - expand the 12-order determinant in Laplace expansion according
to the first three columns;

2nd step - expand the 9-order determinant of each term in the 1st step in
Laplace expansion according to its first three columns, and

3rd step - expand the 6-order determinant of each term in the 2nd step in
Laplace expansion according to its first three columns.

Then one obtains

- gproped o 13,34, j 5. ; s e s s X
Y1rrerin 2 e 3 of 102 3a)adsudendTadsadsal1oaltinhiz 01,32, 9514, 15, d g7, 38, Tep 10,111, 912
3 4
Pl(ﬂ2(p3))
' {F9)

where 0]s02,03 Tesult from the above Laplace expansions and P1sP2,p3 arTe
selections of row indices, of these expansions. A% are given in (E14) of

Appendix E, andiﬂfk’z is given by

) . : .
,D% _ ] J 1 - (F10)
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If one wants to get an idea about the length of the summation (F9),

one will find that there are

_o12.906 _ 121 91 G
PIP203 = M3 373 T TTgT 316! 313!

= 309,600 terms.

The determinant Bjqsee is identically equal to zero as it was

2112
expected, and could be seen by performing the following rank—equivalent
column-operations in Table E3, of Appendix E:

i) .Add all the x-columns to one of them, say xl—column

ii) Add all the y-columns to one of them, say y1-column

iii) Add all the z-columns to one of them, say zj-column

The resulting matrix has its first three columns zero. Thus

Bjysererjyz = O (F11)
Such an identity between invariants of the complete system is called a
syzygy. Syzygies result from the expansions as above, of the determin-
ants of the submatrices of dimension greater than six, until an admissible
set of constraints is introduced which leave the jacobian matrix with six
columns. By éonstraining the coordinates Xy,¥1,21,Y2:22523 the jacobian
for the case of four stations in range networks, (Table 1) is left with
the columns of XysXz25Y35XgsY g0 24

Expanding the determinant of its 6x6 submatrix of the first six rows

as above, one has’

1813 0m0e0gq :2;: (nereez |
1 6 aylog) X

ST

. . ¥4 ¥4 L7 1
3 )’3 j z s N =
. ¥,d2.33 34 35 38
I o Yig My 1| 8283783784 8074
¥ 1 (F12}
12 b2 X Y. z.
. j j
xle Y’S 1 ) 5 5 lS
Jg  Yig Zig 1

Notice the presence of fundamental invariants of one dimension:
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Xz 1
1

x.
1
and two dimensions:

| 13 ¥z 1

Expansion (F12) is of particular importance in the problem of deter-

minantal loci for range networks.
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